"SHOSHIN BERIBERI: UMA CAUSA INCOMUM DE INSUFICIENCIA CARDIACA. RELATO DE UM CASO"

Shoshin Beriberi: a unusual cause of Heart Failure. Case Report

BOHRINGER, Peter Andreas ** FEDER, David ** FERNANDES, Leonel * FERNANDES, Rufino José de Oliveira *** MIRANDA, Helder Chala Toledo *** MONTEIRO, Diva Leonor C. **** SABOYA, Rosaura VALENTE, Orsine ****

RESUMO: Os autores relatam um caso de shoshin beriberi em um paciente de 27 anos de idade, estilista, que desenvolveu um quadro de insuficiência cardíaca de alto débito, perda da resistência vascular periférica e grave acidose metabólica.

O quadro cardiovascular e a acidose metabólica rapidamente melhoraram após administração de tiamina.

PATOGENÉSIS e possíveis mecanismos são discutidos.

UNTERMOS: Shoshin Beriberi, Insuficiência Cardiaca, Tiamina.

INTRODUÇÃO

"SHOSHIN BERIBERI" é uma doença fulminante, rara, que somente acomete o sistema cardiovascular, e é causada por uma deficiência aguda de tiamina (10). Shoshin é o nome japonês para a forma fulminante do beriberi cardíaco. Devido à sua raridade e apresentação atípica, o diagnóstico correto é difícilmente feito.

Neste artigo, descrevemos um caso de Shoshin Beriberi que após tratamento com tiamina teve dramática melhora do seu quadro.

DESCRIÇÃO DO CASO

Paciente de 27 anos, sexo masculino, passava bem até há 5 meses quando iniciou quadro de disnesia aos médios esforços. Há um mês notou aparecimento de edema de membros inferiores. No dia da internação, apresentou quadro súbito de disnesia aos mínimos esforços, ortopneia e disnesia paroxástica noturna. Referia ingerir 1 litro de aguardente por dia há 10 anos.

Ao exame, paciente apresentava-se descorado, taquipneico (40/minuto), com frequência cardíaca de 120 bpm. A pressão arterial foi de 130/80 mmHg. Havia estase jugular à 45ºC, hepatomegalia à 5 cm do RGD. Dolorosa, superfície lisa e edema de MHH +/-. Apresentava 3+ bulha e SS +/-. No FMC com irradiação para axila. Seus exames de entrada mostraram Hb 10,2 g/dl, Htc 33% com GB 11.000 cél/cmm. Urina tipo I normal, glicose 90 mg%, uréia 25 mg%, creatinina 0,5 mg%, Na 140 mEq/l, K 3,6 mEq/l, TAP 100%, gasometria Hb 7,3, PO2, 89,9, PCO2, 16,9, BR - 6,8, HCO3 12,6, SATO, 97,2%.

O ECG mostrou taquicardia sinusal, desvio do eixo para a direita e alterações isquêmicas da onda T. O ex de tórax mostrou silhueta cardíaca discreta e aumento de volume com aumento dos sons hilerares, imagem compatível com edema intersticial. O ecocardiograma mostrou aumento das câmaras cardíacas e o US de abdome mostrou hepatomegalia. A diferença artéria-venosa foi de 1,4 ml/100 ml (VN = 5,5 a 5 ml/dl).

DISCUSSÃO

O shoshin beriberi se caracteriza por uma insuficiência cardíaca biventricular grave, colapso vascular, queda da pressão arterial, insuficiência renal, acidose metabólica severa e evolução fatal sem o tratamento correto (9, 14, 5).

Não mais do que 25 casos têm sido descritos na literatura oriental (10). Este reduzido número deve-se provavelmente a casos não publicados e também a erros diagnósticos (8).

As características hemodinâmicas predominantes são um aumento do débito cardíaco e uma grande queda na resistência periférica. De acordo com WENCKEBACH (11), esta vasodilatação tem uma função fundamental na patogênese da doença e provoca uma diminuída diferença artério-venosa de O2. BLACKET & PALMER (4) mostraram que a vasodilatação é predominantemente ligada aos músculos com abertura dos shunts artério-venosos, ocorrendo significante vasodilatação cutânea, redução do fluxo sanguíneo-renal apesar do alto débito cardíaco.

O relacionamento entre a diminuída resistência vascular e a falta de tiamina é sugerida por diversos autores para explicar a reversibilidade da vasodilatação após a administração de vitamina B1 (7, 1).

Embora a responsabilidade do miocárdio tenha sido debatida por muito tempo (13), as modificações histológicas do miocárdio não são específicas (14, 2, 6). Entretanto, insuficiência cardíaca de baixo débito pode se desenvolver após tratamento da insuficiência cardíaca de alto débito com a tiamina, presumivelmente porque a função miocárdica insuficiente forma-se manifesta pelo retorno da resistência periférica ao normal (12).

A acidose metabólica persistente que ocorreu neste paciente apesar da alcalinidade é bastante conhecida nos casos de shoshin beriberi. Isto se deve ao bloqueio das duas reações enzimáticas que a tiamina funciona como co-fator no ciclo de Krebs (fig. 1), levando ao acúmulo dos ácidos lático e pirúvico e consequentemente à acido-
FIGURA 1 — Mostra os locais no ciclo de Krebs em que a tiamina funciona como co-fator de reações enzimáticas.
Fonte: ATTAS et al. 1978 (3).
se metabólica. Este quadro é rapidamente reversível com tiamina endovenosa (3).

Embora a medida da "atividade de transcetolase cetiróctica" não tenha sido realizada, a resposta terapêutica à tiamina é o teste diagnóstico mais confiável (7, 1).

Na avaliação clínica deste paciente foi pensado inicialmente num quadro de infecção pulmonar com sepse. O paciente recebeu inicialmente, grandes quantidades de bicarbonato de sódio, sem correção da acidoose (Tab. 1), furosemida, hidrocortisona e antibiótico de largo espectro sem nenhuma melhora.

Devido ao estado hiperdinâmico, acidoase lática, alcoolismo, desnutrição e na ausência de outras causas de insuficiência cardíaca congestiva de alto débito foi feita a suspeita diagnóstica de shoshin beriberi. O paciente recebeu clidrina de tiamina 300 mg/LEV tendo apresentado melhora de todos os sintomas 6 hs após a tiamina, tendo alta hospitalar 7 dias após, sem nenhuma medicação.

TABELA 1

<table>
<thead>
<tr>
<th>Dia</th>
<th>17/02</th>
<th>17</th>
<th>17</th>
<th>18/02</th>
<th>18</th>
<th>18</th>
<th>18/02</th>
<th>18</th>
<th>18</th>
<th>19/02</th>
<th>22/02</th>
<th>24/02</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7,20</td>
<td>7,12</td>
<td>7,01</td>
<td>7,20</td>
<td>7,10</td>
<td>7,11</td>
<td>7,10</td>
<td>7,36</td>
<td>7,33</td>
<td>7,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO₂</td>
<td>48.7</td>
<td>123</td>
<td>120</td>
<td>58.8</td>
<td>6.37</td>
<td>108.0</td>
<td>11.5</td>
<td>69</td>
<td>94.2</td>
<td>87.2</td>
<td>81.2</td>
<td></td>
</tr>
<tr>
<td>pCO₂</td>
<td>16.2</td>
<td>9.4</td>
<td>8.1</td>
<td>19.4</td>
<td>19.5</td>
<td>25.6</td>
<td>13.5</td>
<td>10.4</td>
<td>39.8</td>
<td>33.2</td>
<td>31.8</td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>-6.8</td>
<td>-15.4</td>
<td>-27.6</td>
<td>-2.1</td>
<td>-12.5</td>
<td>-10.8</td>
<td>-19.3</td>
<td>-24</td>
<td>-2.5</td>
<td>-6.9</td>
<td>-11.7</td>
<td></td>
</tr>
<tr>
<td>HCO₃</td>
<td>12.6</td>
<td>5.5</td>
<td>2.2</td>
<td>19.2</td>
<td>10.9</td>
<td>12.5</td>
<td>5.9</td>
<td>4.0</td>
<td>22.7</td>
<td>18.2</td>
<td>15.2</td>
<td></td>
</tr>
<tr>
<td>SatO₂</td>
<td>97.2</td>
<td>98.0</td>
<td>97.0</td>
<td>95.0</td>
<td>89.8</td>
<td>97</td>
<td>96.9</td>
<td>97.2</td>
<td>96.6</td>
<td>95.7</td>
<td>92.8</td>
<td></td>
</tr>
<tr>
<td>HORA</td>
<td>12:00</td>
<td>21:30</td>
<td>23:00</td>
<td>00:10</td>
<td>2:10</td>
<td>8:30</td>
<td>10:00</td>
<td>10:00</td>
<td>12:00</td>
<td>10:40</td>
<td>11:10</td>
<td></td>
</tr>
</tbody>
</table>

Gasometrias realizadas durante a internação.

Gasometrias realizadas durante a internação.

Referencias Bibliográficas