Assessment of postural sway in people living with HIV/AIDS

Main Article Content

Bruno José Frederico Pimenta
Felipe Arruda Moura
Camila Ramos dos Santos
Raquel de Melo Martins
Jefferson Rosa Cardoso
Inara Marques

Abstract

Introduction: Motor changes are observed in people living with HIV/AIDS. These changes may be associated with the chronicity of infection, continued use of antiretroviral medication, and/or the presence of comorbidities. Objective: The objective of the present study was to evaluate postural sway in people living with asymptomatic HIV/AIDS under treatment with highly active antiretroviral therapy. Methods: Twenty-seven subjects, recruited at an HIV referral center, aged between 30 and 40 years, participated in the study, divided into two groups: HIV group (n=12) and non-HIV group (n=15). The participants performed an experimental task, remaining on a force platform in a static position, in bipedal support and semi-tandem positions, in conditions with and without vision. Results: The results demonstrated that visual occlusion, when the bipedal base was adopted, generated significant differences in the area of oscillation and mean velocity in both groups. Differences were also observed in the area and mean velocity of both groups when the semi-tandem position was adopted without vision. When comparing the groups, it was possible to identify significant differences in the semi-tandem base with vision. Conclusion: Considering these results, it was found that postural oscillation was higher in the visual occlusion condition for both groups. Concomitant to this, we conclude that in the challenging condition, where the base of support is reduced, the HIV group presents greater oscillation (medial-lateral) than the non-HIV group.

Downloads

Download data is not yet available.

Article Details

How to Cite
Pimenta, B. J. F., Moura, F. A., Santos, C. R. dos, Martins, R. de M., Cardoso, J. R., & Marques, I. (2019). Assessment of postural sway in people living with HIV/AIDS. ABCS Health Sciences, 44(3). https://doi.org/10.7322/abcshs.v44i3.1196
Section
Original Articles

References

1. Rossi GMS, Maluf ECP, Carvalho DS, Ribeiro CEL, Battaglin CRP. Impacto da terapia antirretroviral conforme diferentes consensos de tratamento da Aids no Brasil. Rev Panam Salud Publica. 2012;32(2):117-23.

2. Szwarcwald CL, Castilho EA. A epidemia de HIV/AIDS no Brasil: três décadas. Cad Saude Publica. 2011;27(1):4-5. http://dx.doi.org/10.1590/S0102-311X2011001300001

3. Saylor D, Dickens AM, Sacktor N, Slusher B, Pletnikov M, Mankowski JL, et al. HIV-associated neurocognitive disorder - pathogenesis and prospects for treatment. Nat Rev Neurol. 2016;12(4):234-48. http://dx.doi.org/10.1038/nrneurol.2016.27

4. Armentano TC, Silva AR, Ferrari LV, Mateus NG, Mello R. A lipodistrofia em pacientes que vivem com HIV/AIDS. Rev Pesqui Cuid Fundam. 2013;5(5):173-81. http://doi.org/10.9789/2175-5361.2013v5n5esp173

5. Deeks GS, Lewin SR, Havlir DV. The end of AIDS: HIV infection as a chronic disease. Lancet. 2013;382(9903):1525-33. http://dx.doi.org/10.1016/S0140-6736(13)61809-7

6. Tsea W, Cersosimo MG, Gracies JM, Morgello S, Olanow CW, Koller W. Movement disorders and AIDS: a review. Parkinsonism Relat Disord. 2004;10(6):323-34. http://dx.doi.org/10.1016/j.parkreldis.2004.03.001

7. Richert L, Dehail P, Mercié P, Dauchy FA, Bruyand M, Greib C, et al. High frequency of poor locomotor performance in HIV- infected patients. AIDS. 2011;25(6):797-805. http://dx.doi.org/10.1097/QAD.0b013e3283455dff

8. Scruggs RE, Naylor AJD. Mechanisms of zidovudine-induced mitochondrial toxicity and myopathy. Pharmacology. 2008;82(2):83-8. http://dx.doi.org/10.1159/000134943

9. Moyle G. Clinical manifestations and management of antiretroviral nucleoside analog-related mitochondrial toxicity. Clin Ther. 2000;22(8):911-36. http://dx.doi.org/10.1016/S0149-2918(00)80064-8

10. Bauer LO, Wu Z, Wolfson LI. An obese body mass increases the adverse effects of HIV/AIDS on balance and gait. Phys Ther. 2011;91(7):1063-71. http://dx.doi.org/10.2522/ptj.20100292

11. Berner K, Morris L, Baumeister J, Low Q. Objective impairments of gait and balance in adults living with HIV-1 infection: a systematic review and meta-analysis of observational studies. BMC Musculoskeletal Disorders. 2017;18(325):2-26. http://doi.org/10.1186/s12891-017-1682-2

12. Galantino ML, Eke-Okoro ST, McGinnis PQ, Flatley K. Exploration of balance difficulties in aids neuropathy. Rehab Oncol. 2002;20(2):6-12. https://dx.doi.org/10.1097/01893697-200220020-00006

13. Bauer LO, Ceballos NA, Shanley JD, Wolfson LI. Sensorimotor dysfunction in HIV/AIDS: effects of antiretroviral treatment and comorbid psychiatric disorders. AIDS. 2005;19(5):495-502. https://doi.org/10.1097/01.aids.0000162338.66180.0b

14. Zhou Y, Li R, Wang X, Miao H, Wei Y, Ali R, et al. Motor-related brain abnormalities in HIV-infected patients: a multimodal MRI study. Neuroradiology. 2017;59(11):1133-42. http://doi.org/10.1007/s00234-017-1912-1

15. Erlandson KM, Allshouse AA, Jankowski CM, Duong S, MaWhitney S, Kohrt WM, et al. Risk factors for falls in HIV-infected persons. J Acquir Immune Defic Syndr. 2013:61(4):484-9. http://doi.org/10.1097/QAI.0b013e3182716e38

16. Sullivan VE, Rosenbloom MJ, Rohlfing T, Kemper CA, Deresinski S, Pfefferbaum A. Pontocerebellar contribution to postural instability and psychomotor slowing in HIV infection without dementia. Brain Imaging Behav. 2011;5(1):12-24. http://doi.org/10.1007/s11682-010-9107-y

17. Suzuki Y, Nomura T, Casadio M, Morasso P. Intermittent controle with ankle, hip, and mixed strategies during quiet standing: a theoical proposal basead on a double inverted pensulum model. J Theor Biol. 2012;310:55-79. https://doi.org/10.1016/j.jtbi.2012.06.019

18. Sousa AS, Silva A, Tavares JM. Biomechanical and neurophysiological mechanisms related to postural control and efficiency of movement: a review. J Somatosens Mot Res. 2012;29(4):131-43. https://doi.org/10.3109/08990220.2012.725680

19. Dias RBM, Wibelinger LM. Correlação entre força muscular (torque muscular) de flexores e extensors de joelho e risco de quedasemidosos. Rev Bras Cienc Env Hum. 2010;7(Suppl 1):135-43. https://doi.org/10.5335/rbceh.2012.984

20. Baston C, Mancini M, Schoneburg B, Horak F, Rocchi L. Postural strategies assessed with inertial sensors in health and parkinsonian subjects. Gait Posture. 2014;40(1):70-5. https://doi.org/10.1016/j.gaitpost.2014.02.012

21. Mochizuki L, Amadio AC. As funções do controle postural durante a postura ereta. Fisioter Pesqui. 2003;10(1):7-15. https://doi.org/10.1590/fpusp.v10i1.77416

22. Bonfim TR, Barela JA. Efeito da manipulação da informação sensorial na propriocepção e no controle postural. Fisioter Mov. 2007;20(2):107-17.

23. Cohen HS, Cox C, Springer G, Hoffman HJ, Young MA, Margolick JB, et al. Prevalence of abnormalities in vestibular function and balance among HIV-Seropositive and HIV-Seronegative women and men. PLoS One. 2012;7(5):e38419. https://doi.org/10.1371/journal.pone.0038419

24. Soares AV. A contribuição visual para o controle postural. Rev Neurocienc. 2010;18(3):370-9.

25. Kleiner AFR, Schlittler DXC, Sánchez-Arias MDR. O papel dos sistemas visual, vestibular, somatosensorial e auditivo para o controle postural. Rev Neurocienc. 2011;19(2):349-57.

26. Gusmão MFS, Reis LA. Efeito do treinamento sensório-motor no equilíbrio idosos: revisão sistemática. Rev Saúde Coletiva UEFS. 2017;7(1):64-70. http://dx.doi.org/10.13102/rscdauefs.v7i1.1056

27. Man L, Kleinpaul JF, Teixeira CS, Mota CB. Influência dos sistemas sensoriais na manutenção do equilíbrio em gestantes. Fisioter Mov. 2011;24(2):315-25. http://dx.doi.org/10.1590/S0103-51502011000200013

28. Toledo DR, Rinaldi NM, Barela JA. Controle postural em crianças: efeito da manipulação da informação visual discreta. Braz J Motor Behav. 2006;1(1):82-8.

29. Barela JA, Polastri PF, Freitas Junior PB, Godoi D. Efeito da exposição visual no acoplamento entre informação visual e controle postural em bebês. Rev Paul Educ Fís. 2003;17(1):16-31. https://doi.org/10.11606/issn.2594-5904.rpef.2003.138838

30. Schmid M, Nardone A, Nunzio AM, Schmid M, Schieppati M. Equilibrium during static and dynamic tasks in blind subjects: no evidence of cross-modal plasticity. Brain. 2007;130(Pt 8):2097-107. http://dx.doi.org/10.1093/brain/awm157

31. Tomomitsu MSV, Alonso AC, Morimoto E, Bobbio TG, Greve JMD. Static and dynamic postural control in low-vision and normal-vision adults. Clinics. 2013;68(4):517-21. http://dx.doi.org/10.6061/clinics/2013(04)13