Isometric exercises have high responsiveness to lower limbs

Main Article Content

Márcio Rabelo Mota
Matheus Barros
Bruno Pinheiro de Carvalho
Rafael Nascimento Souza
Felipe Alves Machado
Alessandro Oliveira
Renata Aparecida Elias Dantas
Sacha Clael


Introduction: For post-surgical rehabilitation of the anterior cruciate ligament, the medialis and the lateralis vastus need to be worked on for good recovery. There is the discussion about the isometric and isotonic exercises to be used in the rehabilitation phase, and their results diverge in the literature. Objective: This study aims to compare the activation of the medialis and the lateralis vastus in isometric and isotonic exercises. Methods: Eleven subjects (seven men and four women) physically active and experienced in resistance training participated in the study. Anamnesis, anthropometric assessment, 10 Repetition maximum (RM) load test, maximum voluntary isometric contraction test and squat test were performed. Results: For the vastus lateralis of the right leg, the electromyographic activity was significantly higher in the maximal isometric voluntary contraction compared to the dynamic squatting (p<0.05). The same was observed for the left leg (p<0.05). Conclusion: Recruitment of the medial and the lateral vastus in isometric exercises is higher in relation to isotonic exercises.


Download data is not yet available.

Article Details

How to Cite
Mota, M. R., Barros, M., Carvalho, B. P. de, Souza, R. N., Machado, F. A., Oliveira, A., Dantas, R. A. E., & Clael, S. (2020). Isometric exercises have high responsiveness to lower limbs. ABCS Health Sciences, 45.
Original Articles


1. Bottoni CR, Liddell TR, Trainor TJ, Freccero DM, Lindell KK. Postoperative range of motion following anterior cruciate ligament reconstruction using autograft hamstrings:a prospective, randomized clinical trial of early versus delayed reconstructions. Am J Sports Med. 2008;36(4):656-62.

2. Frobell RB, Roos EM, Roos HP, Ranstam J, Lohmander LS. A randomized trial of treatment for acute anterior cruciate ligament tears. N Engl J Med. 2010;363(4):331-42.

3. Arliani GG, Astur DC, Kanas M, Kaleka CC, Cohen M. Lesão do ligamento cruzado anterior: tratamento e reabilitação. Perspectivas e tendências atuais. Rev Bras Ortop. 2012;47(2):191-6.

4. Bjordal JM, Arnøy F, Hannestad B, Strand T. Epidemiology of anterior cruciate ligament injuries in soccer. Am J Sports Med. 1997;25(3):341-5.

5. Matsumoto H, Suda Y, Otani T, Niki Y, Seedhom BB, Fujikawa K. Roles of the anterior cruciate ligament and the medial collateral ligament in preventing valgus instability. J Orthop Sci. 2001;6(1):28-32.

6. Sakane M, Fox RJ, Woo SL, Livesay GA, Li G, Fu FH. In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. J Orthop Res. 1997;15(2):285-93.

7. Pinheiro A, Sousa CV. Lesão do ligamento cruzado anterior. Rev Port Ortop Traum. 2015;23(4):320-9.

8. Katayama M, Higuchi H, Kimura M, Kobayashi A, Hatayama K, Terauchi M, et al. Proprioception and performance after anterior cruciate ligament rupture. Int Orthop. 2004;28(5):278-81.

9. Alves PHM, Silva DCO, Lima FC, Pereira ML, Silva Z. Lesão do ligamento cruzado anterior e atrofia do músculo quadríceps femoral. Biosci J. 2009;25(1):146-56.

10. Konishi Y, Aihara Y, Sakai M, Ogawa G, Fukubayashi T. Gamma loop dysfunction in the quadriceps femoris of patients who underwent anterior cruciate ligament reconstruction remains bilaterally. Scand J Med Sci Sports. 2007;17(4):393-9.

11. McHugh MP, Tyler TF, Nicholas SJ, Browne MG, Gleim GW. Electromyographic analysis of quadriceps fatigue after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2001;31(1):25-32.

12. Lippert LS. Clinical kinesiology and anatomy. 5 ed. Philadelphia: Davis Company, 2011; p.432.

13. Anderson R, Courtney C, Carmeli E. EMG analysis of the vastus lateralis muscles utilizing the unloaded narrow- and wide-stance squats. Human Kinetics J. 1998;7(4):236-47.

14. Alkner BA, Tesch PA, Berg HE. Quadriceps EMG/force relationship in knee extension and leg press. Med Sci Sports Exerc. 2000;32(2):459-63.

15. Pincivero DM, Coelho AJ, Campy RM, Salfetnikov Y, Suter E. Knee extensor torque and quadriceps femoris EMG during perceptually-guided isometric contractions. J Electromyogr Kinesiol. 2003;13(2):159-67.

16. Shao Q, Bassett DN, Manal K, Buchanan TS. An EMG-driven model to estimate muscle forces and joint moments in stroke patients. Comput Biol Med. 2009;39(12):1083-8.

17. Luca CJ. The use of electromyography in biomechanics. Human Kinetics J. 1997;13(2):135-63.

18. Herzog W, Sokolosky J, Zhang YT, Guimarães ACS. EMG-force relation in dynamically contracting cat plantaris muscle. J Electromyogr Kinesiol. 1998;8(3):147-55.

19. Haff GG, Triplett NT, National S, Conditioning A. Essentials of strength training and conditioning. 4th Edition. NSCA, 2016.

20. Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Brit J Nutri. 1978;40(3):497-504.

21. Siri WE. Body Composition from Fluid Spaces and Density: Analysis of Methods. Berkeley: University of California, Lawrence Radiation Laboratory, 1956; p.1-33.

22. Winter DA, Yack HJ. EMG profiles during normal human walking: stride-to-stride and inter-subject variability. Electroencephalogr Clin Neurophysiol. 1987;67(5):402-11.

23. Hermens HJ, Freriks B, Marletti R, Stegeman D, Blok J, Rau G, et al. Seniam: European recommendations for surface electromyography. [Internet] 1999 [Cited 2018 Feb 13] Available from:

24. Acierno SP, D'Ambrosia C, Solomonow M, Baratta RV, D'Ambrosia RD. Electromyography and biomechanics of a dynamic knee brace for anterior cruciate ligament deficiency. Orthopedics. 1995;18(11):1101-7.

25. Rasch PJ, Burke RK. Cinesiologia e anatomia aplicada a ciência do movimento humano. Guanabara Koogan, 1977.

26. Escamilla RF, Fleisig GS, Zheng N, Barrentine SW, Wilk KE, Andrews JR. Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Med Sci Sports Exerc. 1998;30(4):556-69.