Automação no laboratório de microbiologia

Main Article Content

Juliane de Mello Fonseca
Inneke Marie van der Heijden

Abstract

Não se aplica

Downloads

Download data is not yet available.

Article Details

How to Cite
Fonseca, J. de M., & van der Heijden, I. M. (2019). Automação no laboratório de microbiologia. ABCS Health Sciences, 44(2). https://doi.org/10.7322/abcshs.v44i2.1313
Section
Editorial

References

1. Rodrigues CAO, Araújo GM, Silveira IA, Martins RR. Automated phenotypic method versus manual method in the identification of microorganisms isolated from blood cultures: clinical and microbiological outcomes. ABCS Health Sci. 2019; 44(2):96-102. https://doi.org/10.7322/abcshs.v44i2.1156

2. Doern GV, Vautour R, Gaudet M, Levy B. Clinical impact of rapid in vitro susceptibility testing and bacterial identification. J Clin Microbiol. 1994;32(7):1757-62.

3. Burnham CA, Dunne WM, Greub G, Novak SM, Patel R. Automation in the clinical microbiology laboratory. Clin Chem. 2013;59(12):1696-702. http://dx.doi.org/10.1373/clinchem.2012.201038

4. Chatzigeorgiou KS, Sergentanis TN, Tsiodras S, Hamodrakas SJ, Bagos PG. Phoenix 100 versus Vitek 2 in the identification of gram-positive and gram-negative bacteria: a comprehensive meta-analysis. J Clin Microbiol. 2011;49(9):3284-91. http://dx.doi.org/10.1128/JCM.00182-11

5. Donay JL, Mathieu D, Fernandes P, Prégermain C, Bruel P, Wargnier A, et al. Evaluation of the automated phoenix system for potential routine use in the clinical microbiology laboratory. J Clin Microbiol. 2004;42(4):1542-6. https://doi.org/10.1128/jcm.42.4.1542-1546.2004

6. Anhalt JP, Fenselau C. Identification of bacteria using mass spectrometry. Anal Chem. 1975;47(2):219-25. https://doi.org/10.1021/ac60352a007

7. Pasternak J. Novas metodologias de identificação de micro-organismos: MALDI-TOF. Einstein (São Paulo). 2012;10(1):118-9. http://dx.doi.org/10.1590/S1679-45082012000100026

8. Kulah C, Aktas E, Comert F, Ozlu N, Akyar I, Ankarali H. Detecting imipenem resistance in Acinetobacter baumannii by automated systems (BD Phoenix, Microscan WalkAway, Vitek 2); high error rates with Microscan WalkAway. BMC Infect Dis. 2009;16(9):30. http://dx.doi.org/10.1186/1471-2334-9-30

9. Pfennigwerth N, Kaminski A, Korte-Berwanger M, Pfeifer Y, Simon M, Werner G, et al. Evaluation of six commercial products for colistin susceptibility testing in Enterobacterales. Clin Microbiol Infect. 2019; S1198-743X(19)30119-3. https://doi.org/10.1016/j.cmi.2019.03.017

10. Woodford N, Eastaway AT, Ford M, Leanord A, Keane C, Quayle RM, et al. Comparison of BD Phoenix, Vitek 2, and MicroScan automated systems for detection and inference of mechanisms responsible for carbapenem resistance in Enterobacteriaceae. J Clin Microbiol. 2010;48(8):2999-3002. http://dx.doi.org/10.1128/JCM.00341-10

11. Fernández-Cuenca F, Tomás M, Tormo N, Gimeno C, Bou G, Pascual A. Reporting identification of Acinetobacter spp genomic species: A nationwide proficiency study in Spain. Enferm Infecc Microbiol Clin. 2019;37(2):89-92. http://dx.doi.org/10.1016/j.eimc.2018.02.004

12. Jin WY, Jang SJ, Lee MJ, Park G, Kim MJ, Kook JK, et al. Evaluation of VITEK 2, MicroScan, and Phoenix for identification of clinical isolates and reference strains. Diagn Microbiol Infect Dis. 2011;70(4):442-7. http://dx.doi.org/10.1016/j.diagmicrobio.2011.04.013