High energy photobiomodulation therapy in the early days of injury improves sciatic nerve regeneration in mice

Main Article Content

Luana Gabriel de Souza
Ramon Bauer Cardoso
Heloyse Uliam Kuriki
Alexandre Márcio Marcolino
Marisa de Cássia Registro Fonseca
Rafael Inácio Barbosa

Abstract

Introduction: Different studies have evaluated the effects of electrophysical agents on regeneration after peripheral nerve injury. Among them, the most used in clinical and experimental research is photobiomodulation therapy (PBMT). Objective: To analyze the effect of standard energy (16.8 J) of PBMT on peripheral nerve regeneration, applied at different periods after sciatic nerve injury in mice. Methods: Thirty male Swiss mice were divided into six groups: naive; sham; control; LLLT-01 (660 nm, 16.8 J of total energy emitted in 1 day); LLLT-04 (660 nm, 4.2 J per day, 16.8 J of total energy emitted in 4 days); LLLT-28, (660 nm, 0.6 J per day, 16.8 J of total energy emitted over 28 days). The animals were evaluated using thermal hyperalgesia, Sciatic Functional Index (SFI), and Static Sciatic Index (SSI). Data were obtained at baseline and after 7, 14, 21, and 28 days after surgery. Results: For the SFI and SSI, all groups showed significant differences compared to the control group, and the LLLT-04 group presented the best results among those receiving PBMT. In the assessment of thermal hyperalgesia, there was a significant difference in the 14th day of evaluation in the LLLT-04 group. Conclusion: The application of 16.8 J was useful in sciatic nerve regeneration with an improvement of hyperalgesia, with higher efficacy when applied in four days (4.2 J/day).

Downloads

Download data is not yet available.

Article Details

How to Cite
Souza, L. G. de, Cardoso, R. B., Kuriki, H. U., Marcolino, A. M., Fonseca, M. de C. R., & Barbosa, R. I. (2020). High energy photobiomodulation therapy in the early days of injury improves sciatic nerve regeneration in mice. ABCS Health Sciences, 45, e020016. https://doi.org/10.7322/abcshs.45.2020.1345
Section
Original Articles
Author Biography

Rafael Inácio Barbosa, Programa de Pós-Graduação em Ciências da Reabilitação, Universidade Federal de Santa Catarina (UFSC) – Araranguá (SC), Brazil

Professor Adjunto do Curso de Fisioterapia da Universidade Federal de Santa Catarina, UFSC/Araranguá e Docente Permanente do Programa de Mestrado em Ciências da Reabilitação da UFSC-Araranguá. Pós-doutorado, em andamento, pelo pelo programa de Reabilitação e Desempenho Funcional (PPGRDF) na Faculdade de Medicina de Ribeirão Preto/Universidade de São Paulo; Doutorado pelo PPGRDF/Universidade de São Paulo - FMRP/USP; Mestre em Ciências da Saúde - Opção: Reabilitação pela FMRP/USP; Aprimoramento Profissional em Fisioterapia Ortopédica e Traumatológica pelo Hospital das Clínicas da FMRP/USP e Pós-graduação em Reabilitação do Membro Superior pela Universidade Federal de São Carlos. Atualmente é Presidente Nacional da ABRAFITO; Revisor dos periódicos: Trials, American Journal of Physical Medicine and Rehabilitation, Rheumatology International, Lasers in Medical Science, Lasers in Surgery & Medicine, Brazilian Journal of Physical Therapy e Fisioterapia e Pesquisa. Tem experiência clínica e acadêmica na área de Fisioterapia em Ortopedia e Traumatologia e Fotobiomodulação. Membro dos Grupos de Pesquisa: Avaliação e Reabilitação do Aparelho Locomotor - UFSC, Laboratório de Recursos Fisioterapêuticos - LARF/USP e Avaliação e Intervenção Fisioterapêutica nas Disfunções da Mão e Membro Superior - USP/RP.

References

1. Taylor CA, Braza D, Rice JB, Dillingham T. The incidence of peripheral nerve injury in extremity trauma. Am J Phys Med Rehabil. 2008;87(5):381-5. http://doi.org/10.1097/PHM.0b013e31815e6370

2. Simon NG, Spinner RJ, Kline DG, Kliot M. Advances in the neurological and neurosurgical management of peripheral nerve trauma. J Neurol Neurosurg Psychiatry. 2016; 87(2):198-208. https://doi.org/10.1136/jnnp-2014-310175

3. Stratton JA, Kumar R, Sinha S, Shah P, Stykel M, Shapira Y, et al. Purification and characterization of Schwann cells from adult human skin and nerve. eNeuro. 2017; 4(3):307-16. https://doi.org/10.1523/ENEURO.0307-16.2017

4. Geuna S. The sciatic nerve injury model in pre-clinical research. J Neurosci Methods. 2015;243:39-46.
https://doi.org/10.1016/j.jneumeth.2015.01.021

5. Grinsell D, Keating C. Peripheral nerve reconstruction after injury: A review of clinical and experimental therapies. Biomed Res Int. 2014;2014:698256. http://dx.doi.org/10.1155/2014/698256

6. Xia B, Chen G, Zou Y, Yang L, Pan J, Lv Y. Low intensity pulsed ultrasound combination with induced pluripotent stem cells derived neural crest stem cells and growth differentiation factor 5 promotes sciatic nerve regeneration and functional recovery. J Tissue Eng Regen Med. 2019;13(4):625-36. http://doi.org/10.1002/term.2823

7. Ni XJ, Wang XD, Zhao YH, Sun HL, Hu YM, Yao J, et al. The Effect of Low-Intensity Ultrasound on Brain-Derived Neurotropic Factor Expression in a Rat Sciatic Nerve Crushed Injury Model. Ultrasound Med Biol. 2017;43(2):461-8. https://dx.doi.org/10.1016/j.ultrasmedbio.2016.09.0 17

8. Willand MP, Nguyen MA, Borschel GH, Gordon T. Electrical Stimulation to Promote Peripheral Nerve Regeneration. Neurorehabil Neural Repair. 2016;30(5):490-6. https://doi.org/10.1177/1545968315604399

9. Souza LG, Marcolino AM, Kuriki HU, Gonçalves ECD, Fonseca MCR, Barbosa RI. Comparative effect of photobiomodulation associated with dexamethasone after sciatic nerve injury model. Lasers Med Sci. 2018;33(6):1341-9. http://dx.doi.org/ 10.1007/s10103-018-2494-9

10. Barbosa RI, Marcolino AM, Guirro RRJ, Mazzer N, Barbieri CH, Fonseca MCR. Comparative effects of wavelengths of low-power laser in regeneration of sciatic nerve in rats following crushing lesion. Lasers Med Sci. 2010;25(3):423-30. https://doi.org/10.1007/s10103-009-0750-8

11. Barbosa RI, Marcolino AM, Guirro RRJ, Mazzer N, Barbieri CH, Fonseca MCR. Efeito do laser de baixa intensidade (660 nm) na regeneração do nervo isquiático lesado em ratos. Fisioter Pesqui. 2010;17(4):294-9.
http://dx.doi.org/10.1590/S1809-29502010000400002

12. Ziago EK, Fazan VP, Iyomasa MM, Sousa LG, Yamauchi PY, Silva EA, et al. Analysis of the variation in low-level laser energy density on the crushed sciatic nerves of rats: a morphological, quantitative, and morphometric study. Lasers Med Sci. 2017; 32(2):369-78. https://doi.org/10.1007/s10103-016-2126-1

13. Buchaim DV, Rodrigues AC, Buchaim RL, Barraviera B, Ferreira Junior RS, Rosa Junior GM, et al. The new heterologous fibrin sealant in combination with low-level laser therapy (LLLT) in the repair of the buccal branch of the facial nerve. Lasers Med Sci. 2016;31(5):965-72. https://doi.org/10.1007/s10103-016-1939-2

14. Fallah A, Mirzaei A, Gutknecht N, Demneh AS. Clinical effectiveness of low-level laser treatment on peripheral somatosensory neuropathy. Lasers Med Sci. 2017;32(3):721-8. https://doi.org/10.1007/s10103-016-2137-y

15. Barez MM, Tajziehchi M, Heidari MH, Bushehri A, Moayer F, Mansouri N, et al. Stimulation effect of low level laser therapy on sciatic nerve regeneration in rat. J Lasers Med Sci. 2017;8(Suppl 1):S32-7. https://doi.org/10.15171/jlms.2017.s7

16. Albuquerque-Pontes GM, Vieira RP, Tomazoni SS, Caires CO, Nemeth V, Vanin AA, et al. Effect of pre-irradiation with different doses, wavelengths, and application intervals of low-level laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats. Lasers Med Sci. 2015;30(1):59-66.
https://doi.org/10.1007/s10103-014-1616-2

17. Gupta A, Keshri GK, Yadav A, Gola S, Chauhan S, Salhan AK, et al. Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds. J Biophotonics. 2015;8(6):489-5. https://doi.org/10.1002/jbio.201400058

18. Karu T, Pyatibrat LV, Afanasyeva NI. A Novel mitochondria1 signaling pathway activated by visi ble-to-near infrared radiation. Photochem Photobiol. 2004;80(2)366-72. https://doi.org/10.1562/2004-03-25-RA-123

19. Karu TI. Critical review multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life. 2010;62(8):607-10. https://doi.org/10.1002/iub.359

20. Andrade ALM, Bossini PS, Souza ALMC, Sanchez AD, Parizotto NA. Effect of photobiomodulation therapy (808 nm) in the control of neuropathic pain in mice. Lasers Med Sci. 2017;32(4):865-72. https://doi.org/10.1007/s10103-017-2186-x

21. Rocha IR, Ciena AP, Rosa AS, Martins DO, Chacur M. Photobiostimulation reverses allodynia and peripheral nerve damage in streptozotocin-induced type 1 diabetes. Lasers Med Sci. 2017;32(3):495-501.
https://doi.org/10.1007/s10103-016-2140-3

22. Lee JH, Chiang MH, Chen PH, Ho ML, Lee HE, Wang YH. Anti-inflammatory effects of low-level laser therapy on human periodontal ligament cells: in vitro study. Lasers Med Sci. 2018;33(3):469-77. https://doi.org/10.1007/s10103-017-2376-6

23. Andreo L, Soldera CB, Ribeiro BG, Matos PRV, Bussadori SK, Fernandes KPS, et al. Effects of photobiomodulation on experimental models of peripheral nerve injury. Lasers Med Sci. 2017;32(9):2155-65.
https://doi.org/10.1007/s10103-017-2359-7

24. Al-Shammari AM, Syhood Y, Al-Khafaji AS. Use of low-power He-Ne laser therapy to accelerate regeneration processes of injured sciatic nerve in rabbit. Egypt J Neurol Psychiatry Neurosurg. 2019;55(1).
https://doi.org/10.1186/s41983-018-0047-6

25. Huang YY, Chen ACH, Carroll JD, Hamblin MR. Biphasic Dose response in low level light therapy. Dose Response. 2009;7(4):358-83. https://doi.org/10.2203/dose-response.09-027.Hamblin

26. Wolff AV, Wolff DVM, Smith PD. Office of Laboratory Animal Welfare. Compliance at the institutional and programmatic level. Lab Animal. 1994;23(8):28-9.

27. Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988;32(1):77-88. http://doi.org/10.1016/0304-3959(88)90026-7

28. Fernandes ES, Russell FA, Alawi KM, Sand C, Liang L, Salamon R, et al. Environmental cold exposure increases blood flow and affects pain sensitivity in the knee joints of CFA-induced arthritic mice in a TRPA1-dependent manner. Arthritis Res Ther. 2016;18:7. http://doi.org/10.1186/s13075-015-0905-x

29. Medinaceli L, Freed WJ, Wyatt RJ. An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp Neurol. 1982;77(3):634-43. https://doi.org/10.1016/0014-4886(82)90234-5

30. Smit X, van Neck JW, Ebeli MJ, Hovius SE. Static footprint analysis: a time-saving functional evaluation of nerve repair in rats. Scand J Plast Reconstr Surg Hand Surg. 2004;38(6):321-5. https://doi.org/10.1080/02844310410034277

31. Bervar M. Video analysis of standing: an alternative footprint analysis to assess functional loss following injury to the rat sciatic nerve. J Neurosci Methods. 2000; 102(2):109-16. https://doi.org/10.1016/S0165-0270(00)00281-8

32. Monte-Raso VV, Moro CA, Mazzer N, Fonseca MCR, Fazan VPS, Barbieri G, et al. A new adjustable pinch designed for producing crush nerve injuries in the sciatic nerve of rats. Acta Ortop Bras. 2009;17(4):236-8.
http://dx.doi.org/10.1590/S1413-78522009000400009

33. Baptista AF, Gomes JR S, Oliveira JT, Santos SMG, Vannier-Santos MA, Martinez AMB. A new approach to assess function after sciatic nerve lesion in the mouse-adaptation of the sciatic static index. J Neurosci Methods. 2007;161(2):259-64. https://doi.org/10.1016/j.jneumeth.2006.11.016

34. Takhtfooladi M, Jahanbakhsh F, Takhtfooladi H, Yousefi K, Allahverdi A. Effect of low-level laser therapy (685 nm, 3 J/cm2) on functional recovery of the sciatic nerve in rats following crushing lesion. Lasers Med Sci. 2015;30(3):1047-52. https://doi.org/10.1007/s10103-015-1709-6

35. Seddon HJ. The use of autogenous grafts for the repair of large gaps in peripheral nerves. Br J Surg. 1947;35(138):151-67. https://doi.org/10.1002/bjs.18003513808

36. Wong KM, Babetto E, Beirowski B. Axon degeneration: make the Schwann cell great again. Neural Regen Res. 2017;12(4):518-24. https://doi.org/10.4103/1673-5374.205000

37. Marques CO, Faccioni-Heuser MC, Malysz T. Efeitos da vibração de corpo inteiro sobre a morfofuncionalidade do nervo isquiático em um modelo experimental de lesão por esmagamento. Dissertação (Mestrado) - Universidade Federal do Rio Grande do Sul. Porto Alegre: 2017.

38. Wang T, Ito A, T Aoyama, Nakahara R, Nakahata A, X Ji, et al. Functional evaluation outcomes correlate with histomorphometric changes in the rat sciatic nerve crush injury model: A comparison between sciatic functional index and kinematic analysis. PLoS One. 2018;13(12):e0208985. https://doi.org/10.1371/journal.pone.0208985

39. Lai HC, Lu CH, Wong CS, Lin BF, Chan SM, Kuo CY, et al. Baicalein attenuates neuropathic pain and improves sciatic nerve function recovery in rats with partial sciatic nerve transection. J Chin Med Assoc. 2018;81(11):955-63. https://doi.org/10.1016/j.jcma.2018.03.014

40. Almeida MMMM, Mangueira NM, Gama Filho OP, Oliveira MM, Heluy RA, Silveira Jr L, et al. Biochemical changes in injured sciatic nerve of rats after low-level laser therapy (660 nm and 808 nm) evaluated by Raman spectroscopy. Lasers Med Sci. 2019;34(3):525-35. https://doi.org/10.1007/s10103-018-2627-1