Correlation between Nutritional Parameters, Peripheral muscle strength, and functional capacity of Children and Adolescents with Cystic Fibrosis

Main Article Content

Ana Letícia Andries e Arantes
Mário Flávio Cardoso de Lima
Poliana Guiomar de Almeida Brasiel
Marta Cristina Duarte
Luciana Santos de Carvalho
Carla Malaguti
Sheila Cristina Potente Dutra Luquetti

Abstract

Introduction: Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by different mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, responsible for chloride ion transport across apical membranes of epithelial cells in tissues and bicarbonate secretion. Objective: To investigate the correlation of anthropometric parameters of nutritional status, lung function, peripheral strength, and functional capacity in children and adolescents diagnosed with CF. Methods: A cross-sectional study was carried out with 18 children, adolescents with CF aged between 6 and 15 years old. Anthropometric, body composition, bioimpedance, lung function, and peripheral muscle strength and functional capacity data were collected. Results: The pulmonary function assessment indexes FEV1 and FVC presented a statistically significant correlation with the nutritional status parameters - corrected lean mass (CLM), mid-upper arm circumference (MUAC), mid-arm muscle circumference (MAMC), with manual dynamometry. Concerning the parameters of the peripheral muscle strength and functional capacity, both the six-minute walk test and manual dynamometry showed a positive correlation with the height/age, CLM, MUAC, and MAMC index. Conclusion: Given the correlation between nutritional parameters that reflect muscle mass with lung function, peripheral muscle strength, and functional capacity, the incorporation of these anthropometric measures in the clinical routine could allow a better assessment of the muscular component and the health status of these patients.

Downloads

Download data is not yet available.

Article Details

How to Cite
Arantes, A. L. A. e, Lima, M. F. C. de, Brasiel, P. G. de A., Duarte, M. C., Carvalho, L. S. de, Malaguti, C., & Luquetti, S. C. P. D. (2025). Correlation between Nutritional Parameters, Peripheral muscle strength, and functional capacity of Children and Adolescents with Cystic Fibrosis. ABCS Health Sciences. https://doi.org/10.7322/abcshs.2024172.2912
Section
Original Articles

References

1. Shteinberg M, Haq IJ, Polineni D, Davies JC. Cystic fibrosis. Lancet. 2021;397(10290):2195-211. https://doi.org/10.1016/S0140-6736(20)32542-3

2. Grasemann H, Ratjen F. Cystic Fibrosis. N Engl J Med. 2023;389(18):1693-707. https://doi.org/10.1056/NEJMra2216474

3. Myer H, Chupita S, Jnah A. Cystic fibrosis: back to the basics. Neonatal Netw. 2023;42(1):23-30. https://doi.org/10.1891/NN-2022-0007

4. Registro Brasileiro de Fibrose Cística (EBRAFC). Relatório anual de 2020. Available from: http://portalgbefc.org.br/ckfinder/userfiles/files/REBRAFC_2020.pdf

5. Calvo-Lerma J, Hulst JM, Asseiceira I, Claes I, Garriga M, Colombo C, et al. Nutritional status, nutrient intake and use of enzyme supplements in paediatric patients with Cystic Fibrosis; a European multicentre study concerning current guidelines. J Cyst Fibros. 2017;16(4):510-8. https://doi.org/10.1016/j.jcf.2017.03.005

6. Turck D, Braegger CP, Colombo C, Declercq D, Morton A, Pancheva R, et al. ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clin Nutr. 2016;35(3):557-77. https://doi.org/10.1016/j.clnu.2016.03.004

7. Patel D, Shan A, Mathews S, Sathe M. Understanding Cystic Fibrosis Comorbidities and Their Impact on Nutritional Management. Nutrients. 2022;14(5):1028. https://doi.org/10.3390/nu14051028

8. Dickinson KM, Collaco JM. Cystic Fibrosis. Pediatr Rev. 2021;42(2):55-67. https://doi.org/10.1542/pir.2019-0212

9. Zani EM, Grandinetti R, Cunico D, Torelli L, Fainardi V, Pisi G, et al. Nutritional Care in Children with Cystic Fibrosis. Nutrients. 2023;15(3):479. https://doi.org/10.3390/nu15030479

10. Athanazio RA, Silva Filho LVRF, Vergara AA, Ribeiro AF, Riedi CA, Procianoy EFA, et al. Brazilian guidelines for the diagnosis and treatment of cystic fibrosis. J Bras Pneumol. 2017;43(3):219-45. https://doi.org/10.1590/S1806-37562017000000065

11. Norton KI. Standards for Anthropometry Assessment. In: Kinanthropometry and Exercise Physiology. 4th ed. 2018; p. 70.

12. World Health Organization (WHO). WHO AnthroPlus software. 2007.

13. Tostes NF, da Cunha Antunes Saraiva D, Martucci RB. Association between nutritional status and muscle strength in pediatric cancer patients. Clin Nutr ESPEN. 2021;43:436-41. https://doi.org/10.1016/j.clnesp.2021.03.009

14. Liu Y, Sun G, Li Y. A prospective cohort study on the association of lean body mass estimated by mid-upper arm muscle circumference with hypertension risk in Chinese residents. J Clin Hypertens (Greenwich). 2022;24(3):329-38. https://doi.org/10.1111/jch.14412

15. Charatsi AM, Dusser P, Freund R, Maruani G, Rossin H, Boulier A, et al. Bioelectrical impedance in young patients with cystic fibrosis: Validation of a specific equation and clinical relevance. J Cyst Fibros. 2016;15(6):825-33. https://doi.org/10.1016/j.jcf.2016.05.004

16. Graham BL, Steenbruggen I, Miller MR, Barjaktarevic IZ, Cooper BG, Hall GL, et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am J Respir Crit Care Med. 2019;200(8):e70-88. https://doi.org/10.1164/rccm.201908-1590ST

17. Mallozi MC. Valores de referência para espirometria em crianças e adolescentes, calculados a partir de uma amostra da cidade de São Paulo [dissertation]. [São Paulo]: Universidade Federal de São Paulo; 1995.

18. ATS Statement Guidelines for the Six-Minute Walk Test. Am J Respir Crit Care Med. 2002;166(1):111-7. https://doi.org/10.1164/ajrccm.166.1.at1102

19. MacDermid J, Solomon G, Valdes K. Grip assessment. In: Clinical assessment recommendations: Impairment-based conditions. 3rd ed. American Society of Hand Therapists; 2015; p. 80.

20. Clasey JL, Easley EA, Murphy MO, Kiessling SG, Stromberg A, Schadler A, et al. Body mass index percentiles versus body composition assessments: Challenges for disease risk classifications in children. Front Pediatr. 2023;11:1112920. https://doi.org/10.3389/fped.2023.1112920

21. Gomes A, Hutcheon D, Ziegler J. Association Between Fat-Free Mass and Pulmonary Function in Patients With Cystic Fibrosis: A Narrative Review. Nutr Clin Pract. 2019;34(5):715-27. https://doi.org/10.1002/ncp.10251

22. Chaves CRMM, Britto JAA, Oliveira CQ, Gomes MM, Cunha ALP. Associação entre medidas do estado nutricional e a função pulmonar de crianças e adolescentes com fibrose cística. J Bras Pneumol. 2009;35(5):409-14. https://doi.org/10.1590/S1806-37132009000500004

23. Papalexopoulou N, Dassios TG, Lunt A, Bartlett F, Perrin F, Bossley CJ, et al. Nutritional status and pulmonary outcome in children and young people with cystic fibrosis. Respir Med. 2018;142:60-5. https://doi.org/10.1016/j.rmed.2018.07.016

24. Sheikh S, Zemel BS, Stallings VA, Rubenstein RC, Kelly A. Body Composition and Pulmonary Function in Cystic Fibrosis. Front Pediatr. 2014;2:33. https://doi.org/10.3389/fped.2014.00033

25. Alvarez JA, Ziegler TR, Millson EC, Stecenko AA. Body composition and lung function in cystic fibrosis and their association with adiposity and normal-weight obesity. Nutrition. 2016;32(4):447-52. https://doi.org/10.1016/j.nut.2015.10.012

26. Bohannon RW. Dynamometer Measurements of Hand-Grip Strength Predict Multiple Outcomes. Percept Mot Skills. 2001;93(2):323-8. https://doi.org/10.2466/pms.2001.93.2.323

27. Lammers AE, Hislop AA, Flynn Y, Haworth SG. The 6-minute walk test: normal values for children of 4-11 years of age. Arch Dis Child. 2008;93(6):464-8. http://doi.org/10.1136/adc.2007.123653

28. Okuro RT, Schivinski CIS. Teste de caminhada de seis minutos em pediatria: relação entre desempenho e parâmetros antropométricos. Fisioter Mov. 2013;26(1):219-28. https://doi.org/10.1590/S0103-51502013000100024

29. Lesser DJ, Fleming MM, Maher CA, Kim SB, Woo MS, Keens TG. Does the 6-min walk test correlate with the exercise stress test in children? Pediatr Pulmonol. 2010;45(2):135-40. https://doi.org/10.1002/ppul.21125

30. Gruber W, Orenstein DM, Braumann KM, Hüls G. Health-related fitness and trainability in children with cystic fibrosis. Pediatr Pulmonol. 2008;43(10):953-64. https://doi.org/10.1002/ppul.20881

31. Cunha MT, Rozov T, Oliveira RC, Jardim JR. Six-minute walk test in children and adolescents with cystic fibrosis. Pediatr Pulmonol. 2006;41(7):618-22. https://doi.org/10.1002/ppul.20308

32. Meer K, Gulmans VAM, van der LAAG J. Peripheral Muscle Weakness and Exercise Capacity in Children with Cystic Fibrosis. Am J Respir Crit Care Med. 1999;159(3):748-54. https://doi.org/10.1164/ajrccm.159.3.9802112

33. López-de-Uralde-Villanueva I, Visa TS, Marichalar PM, del Corral T. Minimal detectable change in six-minute walk test in children and adolescents with cystic fibrosis. Disabil Rehabil. 2021;43(11):1594-9. https://doi.org/10.1080/09638288.2019.1663947

34. Arikan H, Yatar İ, Calik-Kutukcu E, Aribas Z, Saglam M, Vardar-Yagli N, et al. A comparison of respiratory and peripheral muscle strength, functional exercise capacity, activities of daily living, and physical fitness in patients with cystic fibrosis and healthy subjects. Res Dev Disabil. 2015;45-46:147-56. https://doi.org/10.1016/j.ridd.2015.07.020