Determinação da atividade antioxidante e do teor total de polifenol em amostras de chá de ervas comercializadas em sachets

Tieme Nakamura, Fátima Santos Silva, Diego Xavier da Silva, Maryane Woth de Souza, Horácio Dorigan Moya

Resumo


Objetivo: Os chás de ervas são tradicionalmente utilizados na medicina popular em muitas regiões do Brasil. Os chás contêm compostos antioxidantes que combatem o stress oxidativo e seu consumo tem sido associado à diminuição dos níveis de colesterol, pressão arterial e até de doenças cardiovasculares. O objetivo deste estudo foi determinar a capacidade antioxidante total, o teor total de polifenóis, o consumo (scavenging) de H2O2 e a presença de outros grupos de compostos antioxidantes em 43 amostras de chás em sachets. Métodos: O método CUPRAC (cupric ion reducing antioxidant capacity) foi utilizado para determinar a capacidade antioxidante total. O teor total de polifenóis foi obtido com o uso do reagente de Folin-Ciocalteu; o ensaio de scavenging baseou-se no consumo de solução de H2O2 após adição do chá; e a presença de flavonóides, carotenos e catequinas foi investigada por cromatografia em papel. Resultados: A capacidade antioxidante total nas amostras analisadas seguiu a ordem: camomila > hortelã > carqueja > cidreira > boldo > verde > mate > preto > branco > erva doce. O teor total de polifenóis obedeceu à sequência: branco > hortelã > preto > mate > boldo > verde > camomila > carqueja > cidreira > erva doce. As divergências encontradas entre as amostras de um mesmo grupo de chá podem ser atribuídas à época da colheita, ao tipo de solo, local de plantio, variações climáticas e partes da planta utilizadas na elaboração dos sachets. Conclusão: Concluise que todas as amostras analisadas apresentaram capacidade antioxidante e consumo de H2O2. Em apenas uma delas não foi possível detectar flavonóides, carotenos ou catequinas.


Palavras-chave


chá; bebidas; polifenóis; flavonóides; carotenóides; catequinas

Texto completo:

PDF

Referências


Willet WC, Skerrett PJ. Eat, drinki and be healthy. The Harvard Medical School Guide to Healthy Eating. New York: Harvard Medical School; 2001.

Kaur C, Kapoor HC. Antioxidants in fruits and vegetables – the millennium’s health. Int J Food Sci Technol. 2001;36(7):703-25. http://dx.doi.org/10.1111/j.1365-2621.2001.00513.x

Asolini FC, Tedesco AM, Carpes ST, Ferraz C, Alencar SM. Atividade antioxidante e antibacteriana dos compostos fenólicos dos extratos de plantas usadas como chás. Braz J Food Technol. 2006;9(3):209-15.

Elejalde Guerra JI. Oxidative stress, diseases and antioxidant treatment. An Med Interna. 2001;18(6):326-35.

Moraes-de-Sousa RA, Oldoni TLC, Regitano-d’Arce MAB, Alencar SM. Antioxidant activity and phenolic composition of herbal infusions consumed in Brazil. Ciencia y Tecnologia Alimentaria. 2008;6(1):41-7. http://dx.doi.org/10.1080/11358120809487626

Ou B, Huang D, Hampsch-Woodill M, Flanagan JA, Deemer EK. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J Agric Food Chem. 2002;50(11):3122-8. http://dx.doi.org/10.1021/jf0116606

Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 2005;53(10):4290-302. http://dx.doi.org/10.1021/jf0502698

Nutraceuticals World [Internet]. Antioxidant testing: an ORAC update: Evaluating antioxidant capacity is challenging but ORAC and other associated methods may be the best solution amidst all of the confusion. Disponível em: http://www.highbeam.com/doc/1G1-114704238.html. Acesso em: 17 jun. 2012.

Yang CS, Wang H, Li GX, Yang Z, Guan F, Jin H. Cancer prevention by tea: evidence from laboratory studies. Pharmacol Res. 2011;64(2):113-22. http://dx.doi.org/10.1016/j.phrs.2011.03.001

Fujiki H, Suganuma M. Green tea: an effective synergist with anticancer drugs for tertiary cancer prevention. Cancer Lett. 2012;324(2):119-25. http://dx.doi.org/10.1016/j.canlet.2012.05.012

Apak R, Güçlü K, Ozyürek M, Karademir SE, Erçag E. The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int J Food Sci Nutr. 2006;57(5-6):292-304. http://dx.doi.org/10.1080/09637480600798132

Apak R, Güçlü K, Ozyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem. 2004;52(26):7970-81. http://dx.doi.org/10.1021/jf048741x

Rognisky V, Lissi EA. Review of methods to determine chain-breaking antioxidant activity in food. Food Chem. 2005;92(2):235-54. http://dx.doi.org/10.1016/j.foodchem.2004.08.004

Halliwell B. Antioxidants and human disease: a general introduction. Nutr Rev. 1997;55(1 pt 2):S44-9.

ANVISA. Farmacopéia Brasileira. 5ª ed. Brasília: Anvisa; 2010. p. 355-7.

Klein-Szanto AJ, Slaga TJ. Effects of peroxides on rodent skin: epidermal hyperplasia and tumor promotion. J Invest Dermatol. 1982;79(1):30-4. http://dx.doi.org/10.1111/1523-1747.ep12510444

Antunes F, Cadenas E. Cellular titration of apoptosis with steady state concentrations of H2O2: submicromolar levels of H2O2 induce apoptosis through fenton chemistry independent of the cellular thiol state. Free Radic Biol Med. 2001;30(9):1008-18. http://dx.doi.org/10.1016/S0891-5849(01)00493-2

Ranganathan AC, Nelson KK, Rodriguez AM, Kim KH, Tower GB, Rutter JL, et al. Manganese superoxide dismutase signals matrix metalloproteinase expression via H2O2-dependent ERK1/2 activation. J Biol Chem. 2001;276(17):14264-70.

Santanam N, Penumetcha M, Speisky H, Parthasarathy S. A novel alkaloid antioxidant, boldine and synthetic antioxidant, reduced form of RU486, inhibit the oxidation of LDL in-vitro and atherosclerosis in vivo in LDLR mice. Atherosclerosis. 2004;173(2):203-10.

Wenzel U, Kuntz S, Brendel MD, Daniel H. Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells. Cancer Res. 2000;60(14):3823-31.

Ahmed-Belkacem A, Pozza A, Mu-oz-Martínez F, Bates SE, Castanys S, Gamarro F, et al. Flavonoid structure-activity studies identify 6-prenylchrysin and tectochrysin as potent and specific inhibitors of breast cancer resistance protein ABCG2. Cancer Res. 2005;65(11):4852-60. http://dx.doi.org/10.1158/0008-5472.CAN-04-1817

Jung SK, Lee KW, Byun S, Kang NJ, Lim SH, Heo YS, et al. Myricetin suppresses UVB-induced skin cancer by targeting fyn. Cancer Res. 2008;68(14):6021-9. http://dx.doi.org/10.1158/0008-5472.CAN-08-0899

Kuzuhara T, Suganuma M, Fujiki H. Green tea catechin as a chemical chaperone in cancer prevention. Cancer Lett. 2008;261(1):12-20. http://dx.doi.org/10.1016/j.canlet.2007.10.037

Mossine VV, Chopra P, Mawhinney TP. Interaction of tomato lycopene and ketosamine against rat prostate tumorigenesis. Cancer Res. 2008;68(11):4384-91. http://dx.doi.org/10.1158/0008-5472.CAN-08-0108

Maccarrone M, Bari M, Gasperi V, Demming-Adams B. The photoreceptor protector zeaxanthin induces cell death in neuroblastoma cells. Anticancer Res. 2005;25(6B):3871-6.

Merck E. Métodos complexométricos de valoración con titriplex. 3ª ed. Darmstadt: Merck; 1972. p.33-4.

Folin O, Ciocalteu V. On tyrosine and tryptophan determinations proteins. J Biol Chem. 1927;73(2):627-50.

Ruch RJ, Cheng SJ, Klainig JE. Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogen. 1989;10(6):1003-8. http://dx.doi.org/10.1093/carcin/10.6.1003

Merck E. Reactivos de coloración para cromatografia em capa fina y em papel. Darmstadt: Merck; 1980. p. 29-107.

Lima VLAG, Melo EA, Lima DESL. Teor de compostos fenólicos totais em chás brasileiros. Braz J Food Technol. 2004;7(2):187-90.

Satoh E, Tohyama N, Nishimura M. Comparison of the antioxidant activity of roasted tea with green, oolong, and black teas. Int J Food Sci Nutr. 2005;56(8):551-9. http://dx.doi.org/10.1080/09637480500398835

Campanella L, Bonanni A, Tomassetti M. Determination of the antioxidant capacity of samples of different types of tea, or of beverages based on tea or other herbal products, using a superoxide dismutase biosensor. J Pharm Biomed Anal. 2003;32(4-5):725-36. http://dx.doi.org/10.1016/S0731-7085(03)00180-8

Balentine DA, Wiseman SA, Bouwens LC. The chemistry of tea flavonoids. Crit Rev Food Sci Nutr. 1997;37(8):693-704. http://dx.doi.org/10.1080/10408399709527797

Chen Q, Shi H, Ho CT. Effects of rosemary extracts and major constituents on lipid oxidation and soybean lipoxygenase activity. J Am Oil Chem Soc. 1992;69(10):999-1002. http://dx.doi.org/10.1007/BF02541065

Kramer RE. Antioxidants in clove. J Am Oil Chem Soc. 1985;62(1):111-3. http://dx.doi.org/10.1007/BF02541505

Chevolleau S, Mallet JF, Ucciani E, Gamisans J, Gruber M. Antioxidant activity in leaves of some Mediterranean plants. J Am Oil Chem Soc. 1992;69(12):1269-71. http://dx.doi.org/10.1007/BF02637699

Samuelsen AB. The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J Ethnopharmacol. 2000;71(1-2):1-21. http://dx.doi.org/10.1016/S0378-8741(00)00212-9

Benzie IF, Szeto YT. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J Agric Food Chem. 1999;47(2):633-6. http://dx.doi.org/10.1021/jf9807768

Matsubara S. Polifenóis em chás comercializados no Brasil. Tese (Mestrado) – Faculdade de Engenharia de Alimentos da Universidade Estadual de Campinas, Campinas, 2001. p. 90.

Dekker M, Verkerk R, van der Sluis AA, Khokhar S, Jongen WM. Analysing the antioxidant activity of food products: processing and matrix effects. Toxicol In Vitro. 1999;13(4-5):797-9. http://dx.doi.org/10.1016/S0887-2333(99)00057-0




DOI: https://doi.org/10.7322/abcshs.v38i1.3

Apontamentos

  • Não há apontamentos.


Direitos autorais 2014 Tieme Nakamura, Fátima Santos Silva, Diego Xavier da Silva, Maryane Woth de Souza, Horácio Dorigan Moya