The action of Metaloproteinases in the Atherosclerotic Diseases

Main Article Content

Álvaro Luís Müller da Fonseca
Fernanda Washington de Mendonça Lima
Ricardo David Couto


Cardiovascular diseases represent the main cause of morbidity and mortality in the world and are epidemic events involving the atherosclerosis and coronary artery disease in particular. There are a wide variety of factors and markers associated with the development and aggravation of these diseases, including atherosclerosis. Subclinical Atherosclerosis can be determined by serum inflammatory markers present in the atherogenic process. Such markers can take a direct or indirect indicator role on atherosclerotic cardiovascular disease. The extracellular matrix metalloproteinases are biomarkers closely related into modifying and remodeling of vascular wall and other tissues and can represent predictive value patterns to support diagnosis. This review discusses the function and types of matrix metalloproteinases and its use as an indicator of support for the diagnosis of atherosclerosis.


Download data is not yet available.

Article Details

How to Cite
Fonseca, Álvaro L. M. da, Lima, F. W. de M., & Couto, R. D. (2014). The action of Metaloproteinases in the Atherosclerotic Diseases. ABCS Health Sciences, 39(3).
Review Articles


1. Ferraz MLF. Avaliação morfológica da aterosclerose em aortas de pacientes autopsiados. Tese (Doutorado) – Universidade Federal do Triângulo Mineiro, Uberaba, 2008.

2. Borges LF, Touat Z, Leclercq A, Zen AA, Jondeau G, Franc B, et al. Tissue diffusion and retention of metalloproteinases in ascending aortic aneurysms and dissections. Hum Pathol. 2009;40(3):306-13.

3. Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem. 1999;274(31):21491-4.

4. Opdenakker G, Van den Steen PE, Van Damme J. Gelatinase B: a tuner and amplifier of immune functions. Trends Immunol. 2001;22(10):571-9.

5. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res. 2002;90(3):251-62.

6. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92(8):827-39.

7. Klein T, Bischoff R. Physiology and pathophysiology of matrix metalloproteinases. Amino Acids. 2011;41(2):271-90.

8. Sang QX. Complex role of matrix metalloproteinases in angiogenesis. Cell Res. 1998;8(3):171-7.

9 Rutschow S, Li J, Schultheiss HP, Pauschinger M. Myocardial proteinases and matrix remodeling in inflammatory heart disease. Cardiovasc Res. 2006;69(3):646-56.

10. Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 2000;14(17):2123-33.

11. Miyage SPH. Análise in vitro da expressão de proteínas da matriz extracelular (ECM) e de metaloproteinases de matriz (MMPs) em células- tronco da polpa dentária humana. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2008.

12. Fang C, Wen G, Zhang L, Lin L, Moore A, Wu S, Ye S, Xiao Q. An important role of matrix metalloproteinase-8 in angiogenesis in vitro and in vivo. Cardiovasc Res. 2013;99(1):146-55.

13. Xiao Q, Zhang F, Lin L, Fang C, Wen G, Tsai TN, et al. Functional role of Matrix Metalloproteinase-8 in Stem/Progenitor cell migration and their recruitment into atherosclerotic lesions. Circ Res. 2013;112:35-47.

14. Lima ES, Couto RD. Estrutura, metabolismo e funções fisiológicas da lipoproteína de alta densidade. J Bras Patol Med Lab. 2006;42(3):169-78.

15. Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis. An Rev Immunol. 2009;27:165-97.

16. Siefert SA, Sarkar R. Matrix metalloproteinases in vascular physiology and disease. Vascular. 2012;20(4):210-6.

17. Torzewski M, Suriyaphol P, Paprotka K, Spath L, Ochsenhirt V, Schmitt A, et al. Enzymatic modification of low-density lipoprotein in the arterial wall: a new role for plasmin and matrix metalloproteinases in atherogenesis. Arterioscler Thrombos Vasc Biol. 2004;24(11):2130-6.

18. Kalela A. Factors affecting serum matrix metalloproteinase-9 with special reference to atherosclerosis. Thesis (Doctoral) – Medical School of the University of Tampere. 2002.

19. Libby P. Inflammation and atherosclerosis. Nature. 2002;420(6917):868-74.

20. Inoue T, Kato T, Takayanagi K, Uchida T, Yaguchi I, Kamishirado H, et al. Circulating matrix metalloproteinase-1 and -3 in patients with and acute coronary syndrome. Am J Cardiol. 2003;92:1461-4.

21. Yu WH, Yu S, Meng Q, Brew K, Woessner JF Jr. TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. J Biol Chem. 2000;275(40):31226-32.

22. Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev. 2005;85(1):1-31.

23. Fonseca ALM. Metaloproteinases de matriz e incorporação de colesterol na lipoproteína de alta densidade (HDL) na doença carotídea. Tese (Doutorado) – Fundação Oswaldo Cruz, Salvador, 2012. p. 93.

24. Mallat Z. Inflammation, and atherosclerotic lesion growth matrix metalloproteinase-8 and the regulation of blood pressure, vascular. Circ Res. 2009;105:827-9.

25. Karapanagiotidis GT, Antonitsis P, Charokopos N, Foroulis CN, Anastasiadis K, Rouska E, et al. Serum levels of matrix metalloproteinases -1,-2,-3 and -9 in thoracic aortic diseases and acute myocardial ischemia. J Cardiothoracic Surg. 2009;4:59.

26. Jackson ZS, Dajnowiec D, Gotlieb AI, Langille BL. Partial off-loading of longitudinal tension induces arterial tortuosity. Arterioscler Thrombos Vasc Biol. 2005;25(5):957-62.

27. Sebastian L, Mach F, Montecucco F. Role of Matrix Metalloproteinase-8 in Atherosclerosis. Mediat Inflamm. 2013;(2013):1-6.

28. Beaudeux JL, Giral P, Bruckert E, Foglietti MJ, Chapman MJ. Métalloprotéases matricielles et athérosclérose. Perspectives thérapeutiques. Ann Biol Clin. 2003;61(2):147-58.

29. Halpert I, Sires UI, Roby JD, Potter-Perigo S, Wight TN, Shapiro SD, et al. Matrilysin is expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and localizes to areas of versican deposition, a proteoglycan substrate for the enzyme. Proc Natl Acad Sci U S A. 1996;93(18):9748-53.

30. Djurić T, Zivković M, Stanković A, Kolaković A, Jekić D, Selaković V, Alavantić D. Plasma levels of matrix metalloproteinase-8 in patients with carotid atherosclerosis. J Clin Lab Anal. 2010;24(4):246-51.

31. Wang KF, Huang PH, Chiang CH, Hsu CY, Leu HB, Chen JW, Lin SJ. Usefulness of plasma matrix metalloproteinase-9 level in predicting future coronary revascularization in patients after acute myocardial infarction. Coron Artery Dis. 2013;24(1):23-8.

32. Lubos E, Schnabel R, Rupprecht HJ, Bickel C, Messow CM, Prigge S, et al. Prognostic value of tissue inhibitor of metalloproteinase-1 for cardiovascular death among patients with cardiovascular disease: results from the AtheroGene Study. Eur Heart J. 2006;27(2):150-6.

33. Romero JR, Vasan RS, Beiser AS, Polak JF, Benjamin EJ, Wolf PA, et al. Association of carotid artery atherosclerosis with circulating biomarkers of extracellular matrix remodeling: the Framingham Offspring Study. J Stroke Cerebrovasc Dis. 2008;17(6):412-7.

34. Schwartz SM, Galis ZS, Rosenfeld ME, Falk E. Plaque rupture in humans and mice. Arterioscler Thrombos Vasc Biol. 2007;27:705-13.

35. Xin JIG, He-Song ZG, Yi G, Zhi-Bin Z, Bing-Shan TG, Fu-Kang LI. The expression of matrix metalloproteinases-9, transforming growth factor-β1 and transforming growth factor- receptor in human atherosclerotic plaque and their relationship with plaque stability. Chin Med J. 2004;117(12):1825-9.

36. Wilson D, Massaeli H, Russell JC, Pierce GN, Zahradka P. Low matrix metalloproteinase levels precede vascular lesion formation in the JCR:LA-cp rat. Mol Cell Biochem. 2003;249(1-2):151-5.

37. Gaubatz JW, Ballantyne CM, Wasserman BA, Max HE, Chambless LE, Boerwinkle E, Hoogeveen RC. Association of circulating matrix metalloproteinases with carotid artery characteristics: the atherosclerosis risk in Communities Carotid MRI Study. Arterioscler Thrombos Vasc Biol. 2010;30(5):1034-42.

38. Motterle A, Xiao Q, Kiechl S, Pender SL, Morris GE, Willeit J, Caulfield MJ, Ye S. Influence of matrix metalloproteinase-12 on fibrinogen level. Atherosclerosis. 2012;220(2):351-4.

39. Libby, P. Collagenases and cracks in the plaque. J Clin Invest. 2013;123(8):3201-3.

40. Siasos G, Tousoulis D, Kioufis S, Oikonomou E, Siasou Z, Limperi M, Papavassiliou Ag, Stefanadis C. Inflammatory mechanisms in atherosclerosis: the impact of matrix metalloproteinases. Curr Top Med Chem. 2012;12(10):1132-48.

41. Sahara M, Ikutomi M, Morita T, Minami Y, Nakajima T, Hirata Y, et al. Deletion of Angiotensin-converting Enzyme 2 Promotes the Development of Atherosclerosis and Arterial Neointima Formation. Cardiovasc Res. 2014;101(2):236-46.

42. Guimarães DA, Rizzi E, Ceron CS, Martins-Oliveira A, Gerlach RF, Santos JET. Inibição de metaloproteinases da matriz extracelular: uma possível estratégia terapêutica na hipertensão arterial? Rev Bras Hipertens. 2010;17(14):226-30.

43. Silva DC, Gerchiaro G. Relações patofisiológicas entre estresse oxidativo e arteriosclerose. Qim Nova. 2011;34(2):300-5.

44. Araújo RVS, Silva FO, Melo-Júnior MR; Porto AL. Metaloproteinases: aspectos fisiopatológicos sistêmicos e sua importância na cicatrização. Rev Ciênc Méd Biol. 2011;10(1):82-8.

45. Silva JM, Saldanha C. Endotélio Arterial e Aterotrombogénese II: disfunção endotelial e desenvolvimento das lesões aterotrombóticas. Rev Port Cardiol. 2006;25(12)1159-86.