Schizophyllan Polysaccharide from Schizophyllum commune demonstrates antinociceptive effect on preclinical models of acute pain

Main Article Content

Katherine Plautz
Gabriela Borgmann
Alessandra Betina Gastaldi
Gustavo Schuetzler Gomes Fernandes
Eduardo Manoel Pereira
Samira Dal-Toé de Prá
Nicole Dalonso
Débora Delwing-Dal Magro
Daniela Delwing-de Lima

Abstract

Introduction: Twenty-five to 29% of the global population experiences pain that motivates seeking emergency services. Objective: To evaluate the effect of schizophyllan glucan polysaccharide (SPG), an isolated β-(1→3),(1→6) glucan polysaccharide of Schizophyllum commune, in acute pain and neuromuscular performance on pre-clinical models. Methods: Male adult Swiss mice (20-30g, 60 days) were acclimated for a week in groups of 7 per cage before the experiment. SPG was administered, intraperitoneally, at doses of 0.1, 1.0, 3.0, 5.0, 10.0, 30.0, and 100.0 mg/Kg for the writhing test, and 1.0, 10.0, and 30.0 mg/Kg for the formalin and Rotarod tests, respectively. Statistical analysis was performed using one-way ANOVA, followed by the Duncan post hoc test, respectively, as appropriate (p<0.05). Results: Regarding the abdominal writhing test, SPG doses of 1.0, 5.0, 10.0, 30.0, and 100.0 mg/Kg promoted a significant reduction in writing of, respectively, 90.6%, 86.6%, 83.0%, 86.6%, and 76.2%. In the formalin test, the dose of SPG 30 mg/Kg reduced phase II nociception time by 78.0%. Relevant sedation was observed only to SPG 100 mg/Kg in the Rotarod test. Conclusion: SPG showed significant analgesic effects on acute inflammatory pain without causing concomitant central nervous system depression.

Downloads

Download data is not yet available.

Article Details

How to Cite
Plautz, K., Borgmann, G., Gastaldi, A. B., Fernandes, G. S. G., Pereira, E. M., Prá, S. D.-T. de, Dalonso, N., Magro, D. D.-D., & Lima, D. D.- de. (2025). Schizophyllan Polysaccharide from Schizophyllum commune demonstrates antinociceptive effect on preclinical models of acute pain . ABCS Health Sciences. https://doi.org/10.7322/abcshs.2024014.2718
Section
Original Articles

References

Associação Portuguesa para o Estudo da Dor (APED). Declaração de Montreal. Available from: https://www.aped-dor.org/index.php/informacoes-uteis/declaracao-de-montreal

Abiuso N, Santelices JL, Quezada R. Manejo del dolor agudo en el Servicio de Urgencia. Rev Med Clín Condes. 2017;28(2):248-60. http://doi.org/10.1016/j.rmclc.2017.04.012

Non-steroidal anti-inflammatory drugs (NSAIDs). These medicines are widely used to relieve pain, reduce inflammation, and bring down a high temperature. Available from: https://www.nhs.uk/conditions/nsaids/

Castro EM, Calder PC, Roche HM. β-1,3/1,6-Glucans, and Immunity: State of the Art and Future Directions. Mol Nutr Food Res. 2021;65(1):e1901071. http://doi.org/10.1002/mnfr.201901071

Choi Y, Nguyen HTK, Lee TS, Kim JK, Choi J. Genetic Diversity and Dye-Decolorizing Spectrum of Schizophyllum commune Population. J Microbiol Biotechnol. 2020;30(10):1525-35. http://doi.org/10.4014/jmb.2006.06049

Thongsiri C, Nagai-Yoshioka Y, Yamasaki R, Adachi Y, Usui M, Nakashima K, et al. Schizophyllum commune β-glucan: Effect on interleukin-10 expression induced by lipopolysaccharide from periodontopathic bacteria. Carbohydr Polym. 2021;253:117285. http://doi.org/10.1016/j.carbpol.2020.117285

Wong JH, Ng TB, Chan HHL, Liu Q, Man GCW, Zhang CZ, et al. Mushroom extracts and compounds with suppressive action on breast cancer: evidence from studies using cultured cancer cells, tumor-bearing animals, and clinical trials. Appl Microbiol Biotechnol. 2020;104(11):4675-4703. http://doi.org/10.1007/s00253-020-10476-4

Xie Z, Wang Y, Huang J, Qian N, Shen G, Chen L. Anti-inflammatory activity of polysaccharides from Phellinus linteus by regulating the NF-κB translocation in LPS-stimulated RAW264.7 macrophages. Int J Biol Macromol. 2019;129:61-7. http://doi.org/10.1016/j.ijbiomac.2019.02.023

Valasques Junior GL, Cedro PÉP, Mendes TPS, Miranda ACA, Côrtes Filho AB, Lima DM, et al. Characterization and biological activities of polysaccharides extracted from the filamentous fungal cell wall: An updated literature review. Res Soc Dev. 2020;9(11):e62191110217. http://doi.org/10.33448/rsd-v9i11.10217

Vanin AP, Visentin EZ, Fontana RC, Leal MCBM, Silva SA. Stokke BT, et al. β-(1 → 3) (1 → 6) glucan from Schizophyllum commune 227E.32: High yield production via glucose/xylose co-metabolization. Carbohydr Polym. 2023;320:121176. https://doi.org/10.1016/j.carbpol.2023.121176

Koster R, Anderson M, Beer EJ. Acetic acid-induced analgesic screening. Federation Proceedings. 1959;18:412-17.

Dubuisson D, Dennis SG. The formalin test: A quantitative study of the analgesic effects of morphine, meperidine, and brain stimulation in rats and cats. Pain. 1977;4(2):161-74. https://doi.org/10.1016/0304-3959(77)90130-0

Hunskaar S, Hole K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain. 1987;30(1):103-14. https://doi.org/10.1016/0304-3959(87)90088-1

Dunham NW, Miya TS. A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharm Assoc. 1957;46(3):208-9. https://doi.org/10.1002/jps.3030460322

Bohlen M, Cameron A, Metten P, Crabbe JC, Wahlsten D. Calibration of rotational acceleration for the Rotarod test of rodent motor coordination. J Neurosc Methods. 2009;178(1):10-4. https://doi.org/10.1016/j.jneumeth.2008.11.001

Rustay NR, Wahlsten D, Crabbe JC. Influence of task parameters on rotarod performance and sensitivity to ethanol in mice. Behav Brain Res. 2003;141(2):237-49. https://doi.org/10.1016/s0166-4328(02)00376-5

Williams M, Roger D. Porsolt RD. CNS Safety Pharmacology. In: xPharm: The Comprehensive Pharmacology Reference. 2007;1-13. https://doi.org/10.1016/B978-008055232-3.63682-7

Siegmund E, Cadmus R, Lu G. A Method for evaluating both non-narcotic and narcotic analgesics. Proc Soc Exp Biol Med. 1957;95(4):729-31. https://doi.org/10.3181/00379727-95-23345

Collier HO, Dinneen LC, Johnson CA, Schneider C. The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br J Pharmacol Chemother. 1968;32(2):295-310. https://doi.org/10.1111/j.1476-5381.1968.tb00973.x

Burke A, Smyth E, Fitzgerald GA. Analgesic-antipyretic agents, pharmacotherapy of gout. In: Brunton LL, Lazo JS, Parker KL. Goodman and Gilman: Pharmacological Bases of therapeutics. 11th edition. New York: McGraw Hill, 2006; p. 671-715.

Tjølsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. The formalin test: an evaluation of the method. Pain. 1992;51(1):5-17. https://doi.org/10.1016/0304-3959(92)90003-T

McCall WD, Tanner KD, Levine JD. Formalin induces biphasic activity in C-fibers in the rat. Neurosci Lett. 1996;208(1):45-8. https://doi.org/10.1016/0304-3940(96)12552-0

Saddi GM, Abbott FV. The formalin test in the mouse: A parametric analysis of scoring properties. Pain. 2000;89(1):53-63. https://doi.org/10.1016/S0304-3959(00)00348-1

Fu KY, Light AR, Maixner W. Relationship between nociceptor activity, peripheral edema, spinal microglial activation, and long-term hyperalgesia induced by formalin. Neuroscience. 2000;101(4):1127-35. https://doi.org/10.1016/s0306-4522(00)00376-6

Thongsiri C, Nagai-Yoshioka Y, Yamasaki R, Adachi Y, Usui M, Nakashima K, et al. Schizophyllum commune β-glucan: Effect on interleukin-10 expression induced by lipopolysaccharide from periodontopathic bacteria. Carbohydr Polym. 2021;253;117285. https://doi.org/10.1016/j.carbpol.2020.117285

Bashir KMI, Choi JS. Clinical and Physiological Perspectives of β-Glucans: The Past, Present, and Future. Int J Mol Sci. 2017;18(9):1906. https://doi.org/10.3390/ijms18091906

Baggio CH, Freitas CS, Martins DF, Mazzardo L, Smiderle FR, Sassaki GL, et al. Antinociceptive Effects of (1→3), (1→6)-Linked β-Glucan Isolated From Pleurotus pulmonarius in Models of Acute and Neuropathic Pain in Mice: Evidence for a Role for Glutamatergic Receptors and Cytokine Pathways. J Pain. 2010;11(10):965-71. https://doi.org/10.1016/j.jpain.2010.01.005

Ruthes AC, Carbonero ER, Córdova MM, Baggio CH, Sassaki GL, Gorin PAJ, et al. Fucomannogalactan and glucan from mushroom Amanita muscaria: Structure and inflammatory pain inhibition. Carbohydr Polym. 2013;98(1):761-9. https://doi.org/10.1016/j.carbpol.2013.06.061

Abreu H, Simas FF, Smiderle FR, Sovrani V, Dallazen JL, Ferreira DM, et al. Gelling functional property, anti-inflammatory and antinociceptive bioactivities of β-D-glucan from the edible mushroom Pholiota nameko. Int J Biol Macromol. 2019;122:1128-35. http://doi.org/10.1016/j.ijbiomac.2018.09.062

Silveira MLL, Smiderle FR, Agostini F, Pereira EM, Bonatti-Chaves M, Wisbeck E, et al. Exopolysaccharide produced by Pleurotus sajor-caju: Its chemical structure and anti-inflammatory activity. Int J Biol Macromol. 2015;75:90-6. https://doi.org/10.1016/j.ijbiomac.2015.01.023

Jen CI, Su CH, Lai MN, Ng LT. Comparative anti-inflammatory characterization of selected fungal and plant water soluble polysaccharides. Food Sci Technol Res. 2021;27(3):453-62. https://doi.org/10.3136/fstr.27.453

Yelithao K, Surayot U, Lee C, Palanisamy S, Prabhu NM, Lee J, et al. Studies on structural properties and immune-enhancing activities of glycomannans from Schizophyllum commune. Carbohydr Polym. 2019;218:37-45. https://doi.org/10.1016/j.carbpol.2019.04.057

Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017;9(6):7204-18. https://doi.org/10.18632/oncotarget.23208

Murphy EJ, Rezoagli E, Pogue R, Simonassi-Paiva B, Abidin IIZ, Fehrenbach GW, et al. Immunomodulatory activity of β-glucan polysaccharides isolated from different species of mushroom – A potential treatment for inflammatory lung conditions. Sci Total Environment. 2022;809:152177. https://doi.org/10.1016/j.scitotenv.2021.152177

Baggio CH, Freitas CS, Marcon R, Werner MFP, Rae GA, Smiderle FR, et al. Antinociception of β-d-glucan from Pleurotus pulmonarius is possibly related to protein kinase C inhibition. Int J Biol Macromol. 2012;50(3):872-7. https://doi.org/10.1016/j.ijbiomac.2011.10.023