Polissacarídeo esquizofilan de Schizophyllum commune demonstra efeito antinoceptivo em modelo pré-clínico de dor aguda
Conteúdo do artigo principal
Resumo
Introdução: Aproximadamente 25% a 29% da população mundial sente dor, que motiva a busca por serviços de emergência. Objetivo: Avaliar o efeito do esquizofilan (SPG), um polissacarídeo β-(1→3),(1→6) de Schizophyllum commune, em modelos pré-clínicos de dor aguda e performance neuromuscular. Métodos: Camundongos Swiss adultos (20-30g, 60 dias) foram aclimatados durante uma semana em grupos de 7 por gaiola antes do experimento. SPG foi administrado, intraperitonealmente, em doses de 0.1, 1.0,0 3.0, 5.0, 10.0, 30.0 e 100.0 mg/Kg para o teste de contorções abdominais, e 1.0, 10.0 e 30.0 mg/Kg para os testes de formalina e rotarod, respectivamente. A análise estatística foi realizada utilizando ANOVA one-way, seguido de post hoc de Duncan, conforme apropriado (p<0.05). Resultados: A respeito do teste de contorções abdominais, SPG nas doses de 1.0, 5.0, 10.0, 30.0 e 100.0 mg/Kg promoveram uma redução significativa na contorção de, respectivamente, 90.6%, 86.6%, 83.0%, 86.6% e 76.2%. No teste de formalina, a dose de SPG de 30 mg/Kg reduziu o tempo de nocicepção de fase II em 78.0%. Sedação relevante foi observada apenas no SPG 100 mg/Kg no teste de Rotarod. Conclusão: SPG demonstrou efeitos analgésicos significativos na dor inflamatória aguda sem causar depressão concomitante do sistema nervoso central.
Downloads
Detalhes do artigo

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob uma licença Creative Commons CC BY que permite o compartilhamento e adaptação do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Referências
Associação Portuguesa para o Estudo da Dor (APED). Declaração de Montreal. Available from: https://www.aped-dor.org/index.php/informacoes-uteis/declaracao-de-montreal
Abiuso N, Santelices JL, Quezada R. Manejo del dolor agudo en el Servicio de Urgencia. Rev Med Clín Condes. 2017;28(2):248-60. http://doi.org/10.1016/j.rmclc.2017.04.012
Non-steroidal anti-inflammatory drugs (NSAIDs). These medicines are widely used to relieve pain, reduce inflammation, and bring down a high temperature. Available from: https://www.nhs.uk/conditions/nsaids/
Castro EM, Calder PC, Roche HM. β-1,3/1,6-Glucans, and Immunity: State of the Art and Future Directions. Mol Nutr Food Res. 2021;65(1):e1901071. http://doi.org/10.1002/mnfr.201901071
Choi Y, Nguyen HTK, Lee TS, Kim JK, Choi J. Genetic Diversity and Dye-Decolorizing Spectrum of Schizophyllum commune Population. J Microbiol Biotechnol. 2020;30(10):1525-35. http://doi.org/10.4014/jmb.2006.06049
Thongsiri C, Nagai-Yoshioka Y, Yamasaki R, Adachi Y, Usui M, Nakashima K, et al. Schizophyllum commune β-glucan: Effect on interleukin-10 expression induced by lipopolysaccharide from periodontopathic bacteria. Carbohydr Polym. 2021;253:117285. http://doi.org/10.1016/j.carbpol.2020.117285
Wong JH, Ng TB, Chan HHL, Liu Q, Man GCW, Zhang CZ, et al. Mushroom extracts and compounds with suppressive action on breast cancer: evidence from studies using cultured cancer cells, tumor-bearing animals, and clinical trials. Appl Microbiol Biotechnol. 2020;104(11):4675-4703. http://doi.org/10.1007/s00253-020-10476-4
Xie Z, Wang Y, Huang J, Qian N, Shen G, Chen L. Anti-inflammatory activity of polysaccharides from Phellinus linteus by regulating the NF-κB translocation in LPS-stimulated RAW264.7 macrophages. Int J Biol Macromol. 2019;129:61-7. http://doi.org/10.1016/j.ijbiomac.2019.02.023
Valasques Junior GL, Cedro PÉP, Mendes TPS, Miranda ACA, Côrtes Filho AB, Lima DM, et al. Characterization and biological activities of polysaccharides extracted from the filamentous fungal cell wall: An updated literature review. Res Soc Dev. 2020;9(11):e62191110217. http://doi.org/10.33448/rsd-v9i11.10217
Vanin AP, Visentin EZ, Fontana RC, Leal MCBM, Silva SA. Stokke BT, et al. β-(1 → 3) (1 → 6) glucan from Schizophyllum commune 227E.32: High yield production via glucose/xylose co-metabolization. Carbohydr Polym. 2023;320:121176. https://doi.org/10.1016/j.carbpol.2023.121176
Koster R, Anderson M, Beer EJ. Acetic acid-induced analgesic screening. Federation Proceedings. 1959;18:412-17.
Dubuisson D, Dennis SG. The formalin test: A quantitative study of the analgesic effects of morphine, meperidine, and brain stimulation in rats and cats. Pain. 1977;4(2):161-74. https://doi.org/10.1016/0304-3959(77)90130-0
Hunskaar S, Hole K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain. 1987;30(1):103-14. https://doi.org/10.1016/0304-3959(87)90088-1
Dunham NW, Miya TS. A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharm Assoc. 1957;46(3):208-9. https://doi.org/10.1002/jps.3030460322
Bohlen M, Cameron A, Metten P, Crabbe JC, Wahlsten D. Calibration of rotational acceleration for the Rotarod test of rodent motor coordination. J Neurosc Methods. 2009;178(1):10-4. https://doi.org/10.1016/j.jneumeth.2008.11.001
Rustay NR, Wahlsten D, Crabbe JC. Influence of task parameters on rotarod performance and sensitivity to ethanol in mice. Behav Brain Res. 2003;141(2):237-49. https://doi.org/10.1016/s0166-4328(02)00376-5
Williams M, Roger D. Porsolt RD. CNS Safety Pharmacology. In: xPharm: The Comprehensive Pharmacology Reference. 2007;1-13. https://doi.org/10.1016/B978-008055232-3.63682-7
Siegmund E, Cadmus R, Lu G. A Method for evaluating both non-narcotic and narcotic analgesics. Proc Soc Exp Biol Med. 1957;95(4):729-31. https://doi.org/10.3181/00379727-95-23345
Collier HO, Dinneen LC, Johnson CA, Schneider C. The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br J Pharmacol Chemother. 1968;32(2):295-310. https://doi.org/10.1111/j.1476-5381.1968.tb00973.x
Burke A, Smyth E, Fitzgerald GA. Analgesic-antipyretic agents, pharmacotherapy of gout. In: Brunton LL, Lazo JS, Parker KL. Goodman and Gilman: Pharmacological Bases of therapeutics. 11th edition. New York: McGraw Hill, 2006; p. 671-715.
Tjølsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. The formalin test: an evaluation of the method. Pain. 1992;51(1):5-17. https://doi.org/10.1016/0304-3959(92)90003-T
McCall WD, Tanner KD, Levine JD. Formalin induces biphasic activity in C-fibers in the rat. Neurosci Lett. 1996;208(1):45-8. https://doi.org/10.1016/0304-3940(96)12552-0
Saddi GM, Abbott FV. The formalin test in the mouse: A parametric analysis of scoring properties. Pain. 2000;89(1):53-63. https://doi.org/10.1016/S0304-3959(00)00348-1
Fu KY, Light AR, Maixner W. Relationship between nociceptor activity, peripheral edema, spinal microglial activation, and long-term hyperalgesia induced by formalin. Neuroscience. 2000;101(4):1127-35. https://doi.org/10.1016/s0306-4522(00)00376-6
Thongsiri C, Nagai-Yoshioka Y, Yamasaki R, Adachi Y, Usui M, Nakashima K, et al. Schizophyllum commune β-glucan: Effect on interleukin-10 expression induced by lipopolysaccharide from periodontopathic bacteria. Carbohydr Polym. 2021;253;117285. https://doi.org/10.1016/j.carbpol.2020.117285
Bashir KMI, Choi JS. Clinical and Physiological Perspectives of β-Glucans: The Past, Present, and Future. Int J Mol Sci. 2017;18(9):1906. https://doi.org/10.3390/ijms18091906
Baggio CH, Freitas CS, Martins DF, Mazzardo L, Smiderle FR, Sassaki GL, et al. Antinociceptive Effects of (1→3), (1→6)-Linked β-Glucan Isolated From Pleurotus pulmonarius in Models of Acute and Neuropathic Pain in Mice: Evidence for a Role for Glutamatergic Receptors and Cytokine Pathways. J Pain. 2010;11(10):965-71. https://doi.org/10.1016/j.jpain.2010.01.005
Ruthes AC, Carbonero ER, Córdova MM, Baggio CH, Sassaki GL, Gorin PAJ, et al. Fucomannogalactan and glucan from mushroom Amanita muscaria: Structure and inflammatory pain inhibition. Carbohydr Polym. 2013;98(1):761-9. https://doi.org/10.1016/j.carbpol.2013.06.061
Abreu H, Simas FF, Smiderle FR, Sovrani V, Dallazen JL, Ferreira DM, et al. Gelling functional property, anti-inflammatory and antinociceptive bioactivities of β-D-glucan from the edible mushroom Pholiota nameko. Int J Biol Macromol. 2019;122:1128-35. http://doi.org/10.1016/j.ijbiomac.2018.09.062
Silveira MLL, Smiderle FR, Agostini F, Pereira EM, Bonatti-Chaves M, Wisbeck E, et al. Exopolysaccharide produced by Pleurotus sajor-caju: Its chemical structure and anti-inflammatory activity. Int J Biol Macromol. 2015;75:90-6. https://doi.org/10.1016/j.ijbiomac.2015.01.023
Jen CI, Su CH, Lai MN, Ng LT. Comparative anti-inflammatory characterization of selected fungal and plant water soluble polysaccharides. Food Sci Technol Res. 2021;27(3):453-62. https://doi.org/10.3136/fstr.27.453
Yelithao K, Surayot U, Lee C, Palanisamy S, Prabhu NM, Lee J, et al. Studies on structural properties and immune-enhancing activities of glycomannans from Schizophyllum commune. Carbohydr Polym. 2019;218:37-45. https://doi.org/10.1016/j.carbpol.2019.04.057
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017;9(6):7204-18. https://doi.org/10.18632/oncotarget.23208
Murphy EJ, Rezoagli E, Pogue R, Simonassi-Paiva B, Abidin IIZ, Fehrenbach GW, et al. Immunomodulatory activity of β-glucan polysaccharides isolated from different species of mushroom – A potential treatment for inflammatory lung conditions. Sci Total Environment. 2022;809:152177. https://doi.org/10.1016/j.scitotenv.2021.152177
Baggio CH, Freitas CS, Marcon R, Werner MFP, Rae GA, Smiderle FR, et al. Antinociception of β-d-glucan from Pleurotus pulmonarius is possibly related to protein kinase C inhibition. Int J Biol Macromol. 2012;50(3):872-7. https://doi.org/10.1016/j.ijbiomac.2011.10.023