Effects of Bacillus Calmette-Guérin (BCG Moscow) vaccination on white blood cell count: results of a randomized clinical trial

Main Article Content

Amanda da Rocha Oliveira Cardoso
Marcus Barreto Conte
Laura Raniere Borges dos Anjos
Ana Paula Junqueira-Kipnis
Marcelo Fouad Rabahi

Abstract

Introduction: Bacillus Calmette-Guérin (BCG) vaccination induces innate and specific responses that protect against some severe forms of tuberculosis and have nonspecific effects against other infections. Objective: To evaluate whether revaccination with BCG Moscow is associated with serum increase in total and differential leukocytes. Methods: We conducted an analytical study on the white blood cell count of 156 participants (BCG revaccination group: 80; Control group: 76) of a randomized clinical trial investigating BCG revaccination for the prevention or reduction of complications associated with COVID-19. Blood samples were collected before randomization and after 15 days of intervention. Values were expressed as mean (μ) and standard deviation, using paired t-tests and Student's t-test. Results: BCG revaccination did not alter leukocyte levels between revaccinated (μ, 6019.74±1865.33) and non-revaccinated groups (μ, 6278.75±1823.87), p=0.94. Stratification by sex, obesity, and age did not significantly affect white blood cell levels. Conclusion: Revaccination with BCG Moscow did not stimulate leukocyte production.

Downloads

Download data is not yet available.

Article Details

How to Cite
Cardoso, A. da R. O., Conte , M. B., Anjos , L. R. B. dos, Junqueira-Kipnis, A. P., & Rabahi, M. F. (2025). Effects of Bacillus Calmette-Guérin (BCG Moscow) vaccination on white blood cell count: results of a randomized clinical trial. ABCS Health Sciences. https://doi.org/10.7322/abcshs.2023148.2433
Section
Original Articles

References

Foster M, Hill PC, Setiabudiawan TP, Koeken VACM, Alisjahbana B, van Crevel R. BCG-induced protection against Mycobacterium tuberculosis infection: Evidence, mechanisms, and implications for next-generation vaccines. Immunological Rev. 2021;301(1):122-44. https://doi.org/10.1111/imr.12965

World Health Organization (WHO). BCG vaccines: WHO position paper. Available from: https://apps.who.int/iris/handle/10665/260307

Biering-Sørensen S, Jensen KJ, Monterio I, Ravn H, Aaby P, Benn CS. Rapid protective effects of early BCG on neonatal mortality among low birth weight boys: observations from randomized trials. J Infect Dis. 2018;217(5):759-66. https://doi.org/10.1093/infdis/jix612

Stensballe LG, Nantea E, Jensenc IP, Kofoeda PE, Poulsena A, Jensena H, et al. Acute lower respiratory tract infections and respiratory syncytial virus in infants in Guinea-Bissau: A beneficial effect of BCG vaccination for girls. Community-based case-control study. Vaccine. 2005;23(10):1251-7. https://doi.org/10.1016/j.vaccine.2004.09.006

Giamarellos-Bourboulis EJ, Tsilika M, Moorlag S, Antonakos N, Kotsaki A, Domínguez-Andrés J, et al. Activate: Randomized Clinical Trial of BCG Vaccination against Infection in the Elderly. Cell. 2020;183(2):315-23. https://doi.org/10.1016/j.cell.2020.08.051

Nemes E, Geldenhuys H, Rozot V, Rutkowski KT, Ratangee F, Bilek N, et al. Prevention of M. tuberculosis Infection with H4:IC31 Vaccine or BCG Revaccination. N Engl J Med. 2018;379(2):138-49. https://doi.org/10.1056/NEJMoa1714021

Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol. 2020;20:375-88. https://doi.org/10.1038/s41577-020-0285-6

Moorlag SJCGM, van Deuren RC, van Werkhoven CH, Jaeger M, Debisarun P, Taks E, et al. Safety and COVID-19 Symptoms in Individuals Recently Vaccinated with BCG: A Retrospective Cohort Study. Cell Rep Med. 2020;1(5):100073. https://doi.org/10.1016/j.xcrm.2020.100073

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5

Zhu B, Feng X, Jiang C, Mi S, Yang L, Zhao Z et al. Correlation between white blood cell count at admission and mortality in COVID-19 patients: a retrospective study. BMC Infect Dis. 2021;21(1):574. https://doi.org/10.1186/s12879-021-06277-3

Miller A, Reandelar MJ, Fasciglione K, Roumenova V, Li Y, Otazu GH. Correlation between universal BCG vaccination policy and reduced mortality for COVID-19. medRxiv. 2020. https://doi.org/10.1101/2020.03.24.20042937

Kinoshita M, Tanaka M. Impact of Routine Infant BCG Vaccination on COVID-19. J Infect. 2020;81(4):625-33. https://doi.org/10.1016/j.jinf.2020.08.013

Madsen AMR, Schaltz-Buchholzer F, Benfield T, Bjerregaard-Andersen M, Dalgaard LS, Dam C, et al. Using BCG vaccine to enhance non-specific protection of health care workers during the COVID-19 pandemic: A structured summary of a study protocol for a randomized controlled trial in Denmark. Trials. 2020;21(1):799. https://doi.org/10.1186/s13063-020-04714-3

Junqueira-Kipnis AP, Anjos LRB, Barbosa LCS, Costa AC, Borges JCMB, Cardoso ARO, et al. BCG revaccination of health workers in Brazil to improve innate immune responses against COVID-19: A structured summary of a study protocol for a randomized controlled trial. Trials. 2020;21(1):881. https://doi.org/10.1186/s13063-020-04822-0

Upton CM, van Wijk RC, Mockeliunas L, Simonsson USH, McHarry K, van den Hoogen G, et al. Safety and efficacy of BCG re-vaccination about COVID-19 morbidity in healthcare workers: A double- blind, randomised, controlled, phase 3 trial. EClinicalMedicine. 2022;48:101414. https://doi.org/10.1016/j. eclinm.2022.101414

Koeken VA, Bree LCJ, Mourits VP, Moorlag SJ, Walk J, Cirovic B, et al. BCG vaccination in humans inhibits systemic inflammation in a sex-dependent manner. J Clin Invest. 2020;130(1):5591-602. https://doi.org/10.1172/JCI133935

Anjos LRB, Costa AC, Cardoso AROC, Guimarães RA, Rodrigues RL, Ribeiro KM, et al. Efficacy and Safety of BCG Revaccination With M. bovis BCG Moscow to Prevent COVID-19 Infection in Health Care Workers: A Randomized Phase II Clinical Trial. Front Immunol. 2022;13:841868. https://doi.org/10.1093/infdis/jiu508

Chambers JM, Cleveland WS, Kleiner B, Tukey PA. Graphical methods for data analysis, New York: Chapman,1983.

World Health Organization. Obesity. Available from: https://www.who.int/health-topics/obesity#tab=tab_1

Jensen KJ, Larsen N, Biering-Sørensen S, Andersen A, Eriksen HB, Monteiro I, et al. Heterologous immunological effects of early BCG vaccination in low-birth-weight infants in Guinea-Bissau: A randomized-controlled trial. J Infect Dis. 2015;211(6):956-67. https://doi.org/10.1093/infdis/jiu508

Jensen SK, Jensen TM, Birk NM, Stensballe LG, Benn CS, Jensen KJ, et al. Bacille Calmette-Guérin vaccination at birth and differential white blood cell count in infancy. A randomised clinical trial. Vaccine. 2020;38(11):2449-55. https://doi.org/10.1016/j.vaccine.2020.02.006

Blok BA, Bree CJ, Diavatopoulos DA, Langereis JD, Joosten LAB, Aaby P, et al. Interacting, nonspecific, immunological effects of bacille calmette-guérin and tetanus-diphtheriapertussis inactivated polio vaccinations: An explorative, randomized trial. Clin Infect Dis. 2020;70(3):455-63. https://doi.org/10.1093/cid/ciz246

Cortez AO, Melo AC, Neves LO, Resende KA, Camargos P. Tuberculosis in Brazil: one country, multiple realities. J Bras Pneumol. 2021;47(2):e20200119. https://doi.org/10.36416/1806-3756/e20200119

Borges KCM, Costa AC, Barbosa LCS, Ribeiro KM, Anjos LRB, Kipnis A, et al. Tuberculosis, BCG Vaccination, and COVID-19: Are They Connected? Mini Rev Med Chem. 2022;22(12):1631-47. https://doi.org/10.2174/1389557522666220104152634

Lange C, Aaby P, Behr MA, Donald PR, Kaufmann SHE, Netea MG, et al. 100 years of Mycobacterium bovis bacille Calmette-Guérin. Lancet Infect Dis. 2022;22(1):e2-e12. https://doi.org/10.1016/S1473-3099(21)00403-5

Schaltz-Buchholzer F, Bjerregaard-Andersen M, Øland CB, Golding C, Stjernholm EB, Monteiro I, et al. Early Vaccination with Bacille Calmette-Guérin-Denmark or BCG-Japan Versus BCG-Russia to Healthy Newborns in Guinea-Bissau: a randomized controlled trial. Clin Infect Dis. 2020;71(8):1883-93. https://doi.org/10.1093/cid/ciz1080

Gonzalez-Perez M, Sanchez-Tarjuelo R, Shor B, Nistal-Villan E, Ochando J. The BCG Vaccine for COVID-19: First Verdict and Future Directions. Front Immunol. 2021;12:632478. https://doi.org/10.3389/fimmu.2021.632478

Flanagan KL, Best E, Crawford NW, Giles M, Koirala A, Macartney K, et al. Progress and Pitfalls in the Quest for Effective SARS-CoV-2 (COVID-19) Vaccines. Front Immunol. 2020;11:579250. https://doi.org/10.3389/fimmu.2020.579250

Saade E, Canaday DH, Davidson HE, Han LF, Gravenstein S. Chapter 3- Special Considerations for vaccines and the elderly. Vaccinations. 2019;35-53. https://doi.org/10.1016/B978-0-323-55435-0.00003-3

Jackson LA, Gurtman A, Cleeff M, Frenck RW, Treanor J, Jansen KU, et al. Influence of initial vaccination with 13-valent pneumococcal conjugate vaccine or 23-valent pneumococcal polysaccharide vaccine on anti-pneumococcal responses following subsequent pneumococcal vaccination in adults 50 years and older. Vaccine. 2013;31(13):3594-602. https://doi.org/10.1016/j.vaccine.2013.04.084

Wu Z, McGoogan JM. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239-42. https://doi.org/10.1001/jama.2020.2648

Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020;20(6):669-77. https://doi.org/10.1016/S1473-3099(20)30243-7

Painter SD, Ovsyannikova IG, Poland GA. The weight of obesity on the human immune response to vaccination. Vaccine. 2015;33(36):4422-9. https://doi.org/10.1016/j.vaccine.2015.06.101

Falagas ME, Kompoti, M. Obesity and infection. Lancet Infect Dis. 2006;6(7):438-46. https://doi.org/10.1016/S1473-3099(06)70523-0

Kompaniyets L, Pennington AF, Goodman AB, Rosenblum HG, Belay B, Ko JY, et al. Underlying Medical Conditions and Severe Illness Among 540,667 Adults Hospitalized With COVID-19, March 2020–March 2021. Prev Chronic Dis. 2021;18:E66. https://doi.org/10.5888/pcd18.210123

Popkin BM, Du S, Green WD, Beck MA, Algaith T, Herbst CH, et al. Individuals with obesity and COVID-19: A global perspective on epidemiology and biological relationships. Obesity Rev. 2020;21(11):e13128. https://doi.org/10.1111/obr.13128

BevilacquaA, Li Z, Ho PC. Metabolic dynamics instruct CD8(+) T-cell differentiation and functions. Eur J Immunol. 2022;52(4):541-9. https://doi.org/10.1002/eji.202149486

Carpenter E, Fray L, Gormley E. Cellular responses and Mycobacterium bovis BCG growth inhibition by bovine lymphocytes. Immunol Cell Biol. 1997;75(6):554-60. https://doi.org/10.1038/icb.1997.86

Wang J, Yin Y, Wang X, Pei H, Kuai S, Gu L, et al. Ratio of monocytes to lymphocytes in peripheral blood in patients diagnosed with active tuberculosis. Braz J Infec Dis. 2015;19(2):125-31. https://doi.org/10.1016/j.bjid.2014.10.008

da Costa AC, de Souza Barbosa LC, Kipnis A, Junqueira-Kipnis AP. A expressão diminuída de CD314 pelas células NK se correlaciona com sua capacidade de responder pela produção de IFN-γ após a vacinação com BCG Moscou e está associada a respostas imunológicas precoces distintas. Vacinas. 2023;11(8):1297. https://doi.org/10.3390/vaccines11081297